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Automatic Clustering-Based Two-Branch CNN for
Hyperspectral Image Classification
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Abstract— It is observed that the great spectral variation
in the same hyperspectral image (HSI) pixel class often leads
to misclassification. To solve this problem, we have proposed
an automatic clustering-based two-branch convolutional neural
network (CNN): first, to reduce the intraclass spectral variation,
the HSI pixels are automatically subdivided into smaller classes
by clustering; second, in order to suppress the interference of
spectral amplitude variation, the SincNet is introduced to capture
the spectral pattern by giving more weight to the spectral shape;
third, the DS-CNN with double directional strip convolution
kernel is designed to extract spatial feature, so that specific
contextual interactional features can be collected, especially in
strip-shaped field-like roads and farmlands; finally, the spectral
and spatial features extracted by the two branches are fused
at fully connected layer to obtain an accurate classification.
Extensive experiments demonstrated that the proposed method
can obtain better classification performance than the state-of-
the-art methods.

Index Terms— Automatic clustering, convolutional neural net-
work (CNN), deep learning, hyperspectral image (HSI).

I. INTRODUCTION

HYPERSPECTRAL image (HSI) has received consid-
erable interest in recent years for high spectral and

spatial resolution [1]–[3]. Especially for classification, it has
unique advantages because it can uncover subtle differences
in spectral features of different materials [4]–[6]. The HSI
classification has numerous useful applications, to name a few,
urban planning, disaster monitoring, and scene recognition.
However, it can be observed through a large number of data
sets that the spectra of most materials varied widely (see
Fig. 1). The spectral variability fundamentally affects the
accuracy of HSI classification [7], [8].

Assuming that the spectral curves of all pixels in each
class are the same (e.g., they are all average spectral vectors,
as shown by the black line in Fig. 1), each class can be
easily distinguished. Nevertheless, in the same ground classes,
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Fig. 1. Spectral variation of building pixels. The images in the first column
are the original image and ground truth map of the Xiong-An data set. The
white area in ground truth is the hand-craft labels of the building and the
spectral curves of this class are illustrated in the second column. The latter
two figures represent the spectral curves of different materials in building
class, respectively.

the variation range of the spectral amplitude or shape of pixels
may be different. So that the foreign matter may have similar
spectra, and the objects within a class may have different
spectra. This is the bottleneck hindering the improvement of
classification accuracy. Furthermore, spectral variation com-
plicates the statistical distribution of the sample points and
aggravates the problems caused by a small number of samples.
As a consequence, reducing the impact of spectral variation is
one of the key problems of HSI classification. To tackle this
problem, a wide variety of HSI classification methods were
proposed as follows.

A. HSI Classification Using Feature Engineering

Effective feature representation is a very critical part of
the HSI classification system [9]–[11]. Traditionally, in the
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early development stage, the HSI classification was dominated
by the works that take advantage of spectral features [12].
Xue et al. [13] presented a completely different approach
from a subpixel target detection viewpoint. They utilized
band selection then nonlinear expansion (BSNE) and iter-
ative constrained energy minimization to classify the HSI.
It can be easily implemented and has advantages over other
methods. At the same time, with the development of remote
sensing imaging technology, the spatial resolution of HSI
has been increased, and the spectral–spatial joint features
have also attracted more attention [14]. For example, in [15],
many features, such as multiple features, textural features,
Gray Level Cooccurrence features, and statistical features,
are incorporated as the calculation parameters to get better
classification results. Moreover, inspired by the tensor learning
methods, spatial and spectral features can also be fused into
3-D tensors [16]. It can reduce the loss of intrinsic structure
information for HSI. Guo et al. [17] proposed a tensor-based
technique for HSI classification and use a multilinear prin-
cipal component analysis to preprocess tensors. This method
shows an interesting result. However, most of these tensorial
methods build tensors physically and neglect the features that
follow a predefined logical arrangement. Based on this work,
in [18], a novel generalized tensor regression (GTR) approach,
extended from a simple and efficient classifier, is utilized for
HSI classification.

On the other hand, different methods have different benefits
and challenges. Support vector machines (SVMs) have shown
excellent performances for classifying hyperspectral remote
sensing images. Xia et al. [19] devised a novel ensemble
rotation-based SVM (RoSVM), which can effectively enhance
classification accuracy by combining with multiple classifier
systems (MCSs). And in [20], an adaptive kernel sparse
representation classifier (AK-SRC) is utilized to classify these
interest points into different classes. It can take the similarity
and diversity of different types of feature descriptors into full
consideration and show excellent classification performance.
Simultaneously, the problem of classifying objects can also
be formulated as a clustering procedure [21]. The cluster-
based techniques can get good classification results by finding
distinct structures in the spectral feature space. In [22], a novel
spectral–spatial sparse subspace clustering (SSC) algorithm
is proposed for hyperspectral remote sensing images. They
introduce the SSC algorithm to HSIs, and results show that
the method has excellent performance.

B. HSI Classification Using Convolutional Neural Networks

Currently, convolutional neural networks (CNNs) have
demonstrated excellent performance for HSI classification
[23], [24]. Because it can be naturally adapted to deal with
the problem that HSI often lies in a nonlinear and complex
feature space [25]. We describe these CNN methods from
two aspects: one-stream and multistream. First, CNN whose
architecture with only one branch is considered one-stream
CNN. In [26], the hybrid of one-stream deep CNN and
logistic regression is first introduced into HSI classification.
It is a unique idea. Chen et al. [27] proposed a 3-D CNN

with combined regularization to extract effective spectral–
spatial features of hyperspectral imagery. The experiments
reveal that the proposed approach can provide competitive
results. In 2015, a deep learning-based classification method
is designed in [28]. The method can hierarchically construct
high-level features in an automated way, and the results
showcase the potential of the developed approach for accurate
hyperspectral data classification. Besides, Hang et al. [29]
proposed a new cascaded recurrent neural network, which was
integrated by two cascaded CNN. The first one is to reduce
redundancy and the second one is to learn complementarity.
One-stream CNN has a simpler connection structure and can
achieve better classification results than traditional methods.

Second, unlike these methods, other researchers proposed
multistream CNN-based HSI classification methods from
another aspect [30], [31]. In most CNNs, the feature extract-
ing and classifier training are separated. To overcome this
drawback [32], a spectral–spatial unified network (SSUN) is
designed and combines both shallow and deep convolutional
layers to deal with the information loss. In [33], a two-channel
deep CNN is proposed. Discriminant information is captured
separately from the spectral domain and the spatial domain
and can be effectively exploited and fused. Xu et al. [4]
proposed a novel two branch CNN based on multisource data
(MS-CNN) for classification fusion of HSI and data from
other multiple sensors, such as light detection and ranging
(LiDAR) data. They aid two networks to focus on different
features separately and obtained an excellent classification
performance. In 2018, a diverse region-based CNN is proposed
in [34] for HSI classification. It extracts multiscale spatial–
spectral features by exploiting diverse region-based inputs,
to get more discriminative power. The multistream architecture
helps extract more effective features and all these approaches
can yield competitive performance. However, as far as HSI
classification is concerned, they do not further subdivide the
classes with large spectral differences, which easily promotes
network overfitting.

C. Classification Methods Aiming at Spectral Variation

From a large amount of empirical knowledge, the notion
of a single predetermined spectral signature for each material
(or class) is an ideal concept not observed in real-world
applications [35], [36]. First, in the satellite sensor imaging
process, uncompensated errors in the sensor, uncompensated
atmospheric, and the sun angle relative to the zenith, these
objective factors may all cause the variation of spectral in HSI
[37]. Second, biological activity is also an important reason.
For instance, different benthic animals may cause differences
in the spectra reflected by the water [38]. Furthermore,
whether or not to be affected by pests and diseases will also
make crop areas produce spectral differences. In these cases,
even if the sensor images the same object, it may produce dif-
ferent spectral information. Third, semantically called objects
of a certain class may be different in practice. It is mentioned
in [39] that the spectral character of an object (e.g., mineral
actinolite) even changes with particle sizes. This means that
the mixing of different materials within a class will inevitably
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Fig. 2. Overall flowchart of proposed two-branch CNN for HSI classification. Pretreatment. (a) Clustering module. (b) DS-CNN module for spatial feature
extraction. (c) SincNet module for 1-D spectral information extraction.

lead to the difference in the spectra. In another case, the hand-
crafted label bundle different classes together. Fig. 1 shows
several instances of reflectance spectrum derived for pixels in
the buildings class in a scene, some of which are courtyard
pixels (called building 2 in the figure) instead of real building
pixels (called building 1 in the figure). We can note that the
shape of the spectra in different subclasses varies widely.

Consequently, spectrum variability increases the difference
within a class and reduces the discrimination between different
classes. It brings great difficulties to the fine classification.
To reduce the intraclass spectral variation, many research
scholars have made efforts. In [40], a method is proposed
to extract features by employing graph embedding and deep
learning models. The supervised within-class/between-class
hypergraph is constructed to reduce intraclass variation as
well as the similarity between different classes in the spectral
domain. The model is very interesting. Intra clustering mini-
mization can also be achieved by graph partitioning [41], [42].
Abou-Rjeili and Karypis present a new multilevel graph par-
titioning algorithm in [43]. The new clustering-based schemes
can identify and collapse together groups of vertices that
are highly connected, which significantly outperform existing
approaches. Moreover, the methods based on clustering are
also available. In [44], a technique is devised to reduce the
degree of intraclass spectral variation by defining spectral
subclasses. It is proven that the technique is very effective
in soft classification. In 2014, a density-peak clustering algo-
rithm was designed by Rodriguez et al. [45]. This method
can automatically detect nonspherical clusters and find the
number of clusters without manual operation. What is more,
the initialization parameters of the classification system are
very important [46], [47]. So, we applied the density-peak
cluster algorithm in our work as a preprocess module to get a
better classification result.

From another perspective, spectral variation can result in
the problem with small sample size, because it complicates
the distribution of samples. In other words, if the distrib-
ution of the samples is very uniform, a small number of
samples can accurately describe its statistics characteristics.
In recent years, tensor-based methods have shown excellent
performance against the problem of a small number of samples
[48], [49]. A tensor-based method classification models are
proposed in [50]. The model constructs a classifier, whose
network weights are constrained to satisfy a rank-R Canonical
Polyadic Decomposition. So that it can significantly reduce
the number of weight parameters required to train the model
(and thus the respective number of training samples). And,
the Rank-R feedforward neural network (FNN) classifier
shows better classification performance than the rank-1 FNN
classifier [51]. However, from a statistical point of view,
clustering can reduce the difference within a class and make
the distribution of samples more uniform. Therefore, it is also
a very good method to solve the problem with a small samples
size for HSI classification.

Based on the above analysis, we borrowed the density-
peak clustering algorithm [45] as a preprocessing module
to reduce the large within-class differences. The clustering
result was regarded as a new ground truth map to supervise
the two-branch CNN. On the one hand, it is observed that
square or strip-shaped objects exist in most scenes, such
as roads, farmland, and buildings. Then, CNN with double
directional stripe convolution kernels (DS-CNN) is designed to
extract spatial features of HSI, ensuring the architecture with a
strip receptive field can excavating more meaningful features.
On the other hand, we can see that the spectral curve is much
like a 1-D speech signal. Mirco Ravanelli et al. [52] proposed
a method named SincNet for directly recognizing speech
from the raw waveform. The novel CNN encourages the
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Fig. 3. Pretreatment: New ground truth map generated by Automatic
Clustering. The A class in original ground truth is subdivided into three
smaller classes: A1, A2, and A3.

first layer to discover more meaningful features by exploiting
parametrized sinc functions. It makes the network converge
faster and perform better. Inspired by this, we employed the
SincNet to capture the spectral information of the pixels in
HSI. It can fit more precise spectral details and give more
weight to spectral shape, which suppresses the interference
of spectral amplitude variation. Finally, a softmax classifier is
used to fuse all features obtained from SincNet and DS-CNN
and to classify pixels of HSI. Accordingly, we proposed to
construct an automatic clustering-based two-branch CNN for
HSI classification.

The main contributions of this article are as follows: First,
in order to reduce the within-class difference caused by
spectral variation, the HSI pixels are automatically subdi-
vided into smaller classes by exploiting the density peak
clustering algorithm. Second, the “double stripe” convolution
module is designed to extract spatial information, and the
collected specific contextual interactional features enhance the
sensitivity of the CNN to objects in specific scenes. Finally,
the SincNet is introduced to capture the details of the spectral
pattern by giving more weight to the spectral shape, so that
the interference of spectral amplitude variation can also be
suppressed.

The remainder of this article is organized as follows. The
proposed classification framework is described in Section II.
The experiments and analysis are discussed in Section III. The
conclusion is drawn in Section IV.

II. METHODOLOGY

Our approach for HSI classification utilizes an end-to-
end framework including a clustering module, a DS-CNN,
and a SincNet. As shown in Fig. 2, a new ground truth
map is obtained by clustering HSI pixels. Then we utilize
a two-branch network, constructed by DS-CNN and SincNet,
to extract spatial and spectral features separately. The end of
our framework is a classifier that consists of fully connected
layers with log-softmax loss. And the details are elaborated in
Sections II-A–II-C.

A. Clustering Module

Based on the aforementioned analysis, clustering is an
effective way to reduce the intraclass spectral variation of
HSI. Before being input the network for training, the HSI is
preprocessed by the density peak clustering algorithm, which

clusters the classes with large intraclass differences in HSI into
some smaller subclasses. These new subclass labels are treated
as a new ground-truth map to supervise the training of CNN,
as shown in Fig. 3. The density peak clustering approach is
based on the idea that cluster center pixels are characterized
by a higher density than their neighbors and a large distance
from points with higher densities.

For each pixel spectral vector x of HSI, we assume x =
[x0, x1, x2, . . . xn−1]T , where n is the number of bands. And
two quantities need to be computed: its local density ρ and its
distance δ from pixels of higher density. Both two quantities
depend on the similarity si j between the pixel vectors xi

and x j . It can be calculated by the distance formulas such
as Euclidean distance [53] and Manhattan distance [54]. The
larger the si j , the smaller the similarity between the two
vectors. Compared with other distance calculation methods,
Manhattan distance has higher stability, and more intuitive
representation for vectors with large feature differences in the
data set. Therefore, we choose the Manhattan distance di j

in our approach to calculating the similarity between pixel
vectors

di j =
√

|xi − x j |�
−1∑

|xi − x j | (1)

si j = d−1
i j . (2)

Based on the above calculation results, the local density ρi

of i th data point xi is defined as

ρi =
∑

j

ϕ
(
s−1

i j − c
)

(3)

where ϕ(m) = 1 if m < 0 and ϕ(m) = 0 if m = 0, otherwise,
and c is a similarity cutoff value. The ρi can be treated as
the number of points that are similar to point xi in the range
of similarity cut-off value c. δi is expressed by computing the
maximum similarity (or the minimum distance) between the
point xi and any other point x j with higher density

δi = min
j :ρi>ρ j

(
s−1

i j

)
. (4)

For the point with highest density, we conventionally take
δi = max j (s

−1
i j ) = max j (di j ). Note that δi is much larger

than the nearest neighbor distance only for points that are
local or global maxima in the density. Thus, cluster centers
are recognized as points for which the value of ρi and δi

are anomalously large. If we construct a 2-D space with ρi

and δi as the coordinate axes, then the cluster centers are the
points near the upper right. After the cluster centers have been
found, each remaining point is assigned to the same cluster as
its nearest neighbor of higher density.

After clustering, a new ground truth map with smaller
subclass labels of HSI can be obtained. Assuming that the
labels of original ground truth map classes are A, B, C. . ., then
the new ground-truth map labels are expressed as A1, A2, B1,
B2, B3, C. . . We utilize the new ground-truth map to supervise
the network adjust parameters, but the original ground-truth
map is applied to calculate the network classification accuracy.
Assuming that the new label of one A pixel is A1/A2, and its
prediction result is also A1/A2, it is considered to be correctly
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Fig. 4. Detailed framework of double-stripe convolution. The module is
mainly composed of four convolutional layers (green blocks) and four rule
activation function layers (yellow blocks). The size of each convolution kernel
is 1 × 5 or 5 × 1, which means that it can extract spatial features of strip
regions in different directions.

classified. Among them, if the pixel labeled A1 is predicted to
be in the class A2, it is not regarded as a misclassified pixel.

B. DS-CNN Module

The DS-CNN is designed to extract spatial information of
HSI, in order to better consider the spatial relationship of
pixels. However, a lot of redundant information of HSI needs
to be removed before it is input so that the computational
complexity can be reduced. Here, the principal components
analysis (PCA) [55] is used to reduce the dimension of HSI
and only retain the largest three principal components. We cut
the image into patches with the size of 13 × 13 × 3 centered
the labeled pixel and randomly select a fixed number of
patches as network training samples.

The architecture of the proposed DS-CNN is illustrated
in Fig. 2(b). It makes up of 2-D convolution layers, activation
layers, max-pool layers, and dropout layers [56]. Among them,
the first layer and the last layer are 3 × 3 and 2 × 2 square
convolution kernels. The middle four layers are alternately
arranged with 5 × 1 and 1 × 5 strip convolution kernels,
as shown in Fig. 4. Specifically, before square convolution
kernel operations, the surrounding of input data is padding
with zero, and before stripe convolution operations, padding
with one. At the same time, the convolution stride is set to
1. Besides, the number of convolution kernels used in each
convolution operation is 256. The dropout layer is performed
to prevent the network from overfitting, and the nonlinear
transformation layer (Relu) [57] is chosen to compute the
output activation value of each layer.

As discussed previously, most CNN commonly uses square
convolution kernels to extract features. But for scenes with
complex backgrounds, the square selection region may include
between-class pixels. Especially in areas including narrow
strip-shaped objects, it is difficult to select materials only from
one class even for a small receptive field. It is obvious that the
classification result will be disappointed. However, the multi-
layer stripe convolution kernel can expand the receptive field
in different directions, which can make the selected region
more representative. Thus, DS-CNN has a greater advantage
especially for scenes containing roads and houses.

C. SincNet Module

Through careful observation of the experimental data,
we found that the waveform of the spectrum is very similar

Fig. 5. Spectral waveforms are very similar to low-frequency speech
waveforms. The rich spectral information of each pixel in the HSI can be
regarded as a 1-D signal. According to its similarity with the speech signal,
we can effectively learn from relevant processing methods to obtain more
interesting results.

to the low-frequency speech waveform, as shown in Fig. 5.
In [52], the sinc function is used as a filter to extract speech
signal features. It achieves better performance and is more
interpretable. Inspired by this method, we employed SincNet
for spectral feature extraction of HSI images.

The flowchart of SincNet consists of four layers with
different functions. As shown in Fig. 2(c), it includes sinc
filters, convolution layer, batch norm layer, and max-pool layer
[58], [59], which aim to extract spectral features in HSI. In this
module, the preprocessed 1-D data (each pixel with all band
information, that is pixel vector x = [x0, x1, x2, . . . , xn−1]T )
are first fed into the sinc function filter. Then, we utilize
convolution and max-pool operation to extract normalized
features. Each convolution of a standard CNN is defined as
follows:

y = x ∗ h (5)

y(k) =
n−1∑
i=0

x(i) · h(k − i) (6)

where x is input pixel spectral vector, h =
[h0, h1, h2, . . . , hm−1]T is the filter of length m, and
y = [y0, y1, y2, . . . , ym+n−1]T is the filtered output. All the
m elements of each filter have to be adjustable through CNN
and learned from data. Conversely, the SincNet performs the
convolution with a predefined function G that depends on
few learnable parameters f1, f2 only, as highlighted in the
following equation:

y = x ∗ g[ f1, f2]. (7)

The vector g = [g0, g1, g2, . . . , gm−1]T calculated by the filter
function G can be treated as a convolution kernel in network.
But the adjustable network parameters is f1 and f2, instead of
the elements in the vector (e.g., g0). The function G is defined
as a filter composed of rectangular bandpass filter [60], f1, f2
are the high and low cutoff frequencies of each filter. It can be
written as the difference between two low-pass filters in the
frequency domain. When converted to the time domain [61],
the function G can be expressed as follows:

G[ f1, f2] = 2 f2sinc(2π f2) − 2 f1sinc(2π f1) (8)

Where the sinc function is defined as sinc(a) = sin(a)/a. Due
to the only two learnable parameters of each filter, the training
process of SincNet is much faster than standard CNN. At the
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Fig. 6. Houston data set. (a) False color image. (b) Ground-truth map.

same time, the characteristics of the sinc function or the prior
knowledge about filter shape enable the filter to fit the peak
details of the spectral curve and force the network to focus on
the spectral shape rather than amplitude.

After that, the features derived from two branches (DS-CNN
and SincNet) are concatenated together and fed into the fully
connected layer. Finally, we utilize the log-softmax function
as a classifier to complete the data classification.

III. EXPERIMENTS

In this section, we show the efficacy of the proposed two-
branch CNN on three data sets and compared it with the state-
of-the-art methods. In order to further analyze the effectiveness
of different parameters, we have conducted controlled experi-
ments. It is a scientific test done under controlled conditions,
to test a single variable at a time. And, all programs in
experiments are implemented using Python language, and the
network is constructed by PyTorch deep learning framework.
Pytorch is an open-source Python machine learning library that
can define deep learning models and can be flexibly trained
and used.

A. Data Sets

To evaluate the performance of the proposed method,
the Houston data set, University of Pavia data set, and Xiong-
An data set are employed. As shown in Figs. 6 and 7, for each
data set, we select a fixed number of labeled pixels per class
for training and other pixels for testing.

The Houston data were acquired by a Compact Air-
borne Spectrographic Imager produced by ITRES company
in Canada sensor over the area of the University of Houston
campus and neighbor area and provided by the 2013 IEEE
GRSS data fusion competition. The data size is 349 × 1905
pixels and contains 144 bands with a spectral range from
0.364 to 1.046 μm. Approximately 20 029 labeled pixels with

Fig. 7. Two data sets. (a) False color image of PaviaU data set. (b) Ground-
truth of PaviaU data set. (c) False color image of Xiong-An data set.
(d) Ground truth of Xiong-An data set.

15 classes are from the ground-truth map, and Table I shows
the training and testing samples.

The University of Pavia data set was collected by the Reflec-
tive Optics System Imaging Spectrometer sensor covering
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TABLE I

NUMBER OF TRAINING AND TESTING SAMPLES FOR THE HOUSTON DATA
SET WITHOUT CLUSTERING

TABLE II

NUMBER OF TRAINING AND TESTING SAMPLES FOR THE UNIVERSITY OF

PAVIA DATA SET WITHOUT CLUSTERING

the city of Pavia, Italy. The size of the data is 610 × 340
pixels with 1.3 m spatial resolution. And the scene comprises
103 spectral bands covering the range from 0.43 to 0.86 μm
including nine classes. The numbers of training and testing
samples are listed in Table II.

The Xiong-An data set is collected by a full-spectrum
multimodal imaging spectrometer for a high-resolution special
aviation system developed by the Shanghai Institute of Tech-
nical Physics in China. The scene has 1580 × 3750 pixels,
including 19 classes. It consists of 250 bands ranging from
400 to 1000 nm, and the spatial resolution is 0.5 m. Among
them, we cropped 1003×703 size images including 11 classes
as experimental data. For each class, 1000 sample points were
selected for training, and some sample points in the rest are
used for testing, as shown in Table IV.

Also, our approach without clustering is based on the
samples listed in Tables I, II, and IV. However, the clustering-
based method requires twofold samples to ensure that there
are enough samples for each subclass. Taking the PaviaU data

TABLE III

NUMBER OF TRAINING AND TESTING SAMPLES FOR THE UNIVERSITY OF
PAVIA DATA SET WITH CLUSTERING

TABLE IV

NUMBER OF TRAINING AND TESTING SAMPLES FOR THE XIONG-AN DATA

SET WITHOUT CLUSTERING

set as an example, as shown in Table III, the total number of
samples is twice the original data, but the number of training
samples for each class is the same as the original data. The
rest of the data are used as test samples.

B. Experimental Analysis

HSIs are difficult to be available due to the imaging condi-
tions, and only a few labeled data can be used in experiments.
Especially for the samples after automatic clustering, each
subclass contains less data than the original classes. However,
deep networks usually require a large number of samples for
training. To tackle this issue, we use an effective method to
achieve data augmentation. For the pixels of each subclass
with a small sample size, we first copy it and then add random
noise (±3) to the original data, so that the number of samples
can be increased by a factor of two. Apart from this, if the
spectral variation within the class can be reduced effectively
by the clustering module, the impact of the small sample size
problem can also be reduced. In this way, we can ensure that
there are enough samples to learn and accurately estimate a
large number of parameters in the network.
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Fig. 8. Clustering result is displayed. (a), (a1), (a2) represent the original ground truth maps of the data sets in experiment. (b), (b1), (b2) are the new ground
truth maps after clustering. (c), (c1), (c2) is the detailed images of clustering.

Fig. 9. Overall classification accuracy (%) versus different number of sinc
function filters for three data sets.

For each pixel, SincNet treats each pixel spectral vector
as a 1-D input signal, and DS-CNN selects 13 × 13 pixels
surrounding it as the input data patch. The image patch size
is set based on experience. Although the size 13×13 may not
be the best window size for all the training data set, it also
makes the classification result express the higher accuracy.

Besides, the learning rate is also a key factor to improve
training efficiency and classification accuracy. In our approach,
the learning rate is set to be dynamic, ranging from 0.1 to
0.001. We set up 300 training epochs for each sample data set.
For every 100 epochs, the learning rate drops by an order of

magnitude. For example, in the first 100 epochs, the learning
rate is set to 0.1 and in the range of 200–300 epochs,
the learning rate is set to 0.01. The larger the learning rate,
the greater the parameters change in each training. In the early
epochs, a large learning rate can speed up training efficiency.
But in the later epochs, a small learning rate can prevent the
network from overfitting and fit the image more accurately.

As one of the important parameters of the whole classi-
fication framework, the number of sinc filters always influ-
ences the classification accuracy and computational com-
plexity. However, as the number of sinc filters increases,
the classification accuracy cannot get effectively increase,
but the computational complexity has increased exponentially.
As shown in Fig. 9, we conducted ablation experiments on
the influence of the number of sinc function filters on the
classification effect. The number of sinc filters is set in the
range of {2, 4, 6, 8, 10, 12}. We can see that for Houston
and Xiong-An data sets, when the number of sinc filters
is 8, the accuracy of classification is highest. Although the
accuracy of the PaviaU data set based on eight sinc filters
is not the highest, it can still get a good classification result.
Therefore, we use 8 as the sinc function filters in our following
experiments.

C. Classification Performance

To illustrate the performance of the proposed automatic
clustering-based two branch CNN method, we conducted
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TABLE V

CLASS SPECIFIC AND OVERALL CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR THE HOUSTON DATA

TABLE VI

CLASS SPECIFIC AND OVERALL CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR THE PAVIAU DATA

TABLE VII

CLASS SPECIFIC AND OVERALL CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR THE XIONG-AN DATA
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Fig. 10. Classification maps for the University of Houston data based on different methods. (a) CD-CNN:90.69%. (b) MS-CNN:94.17%. (c) DHCNet:97.15%.
(d) Proposed:98.12%.

comparative experiments and compared them with some
state-of-the-art HSI classification approaches such as CNN
with pixel-pair features (CNN-PPF) [62], contextual deep
CNN (CD-CNN) [63], deformable HSI classification networks
(DHCNets) [64], R-PCA CNN [28], MS-CNN [4], and SSUN
[32]. The experiments treat class-specific results accuracy,
average accuracy (AA), and overall accuracy (OA) as eval-
uation indicators, which are listed in Tables V–VII. Among
them, the “Proposed (NC)” represents that the data without
clustering is input into two-branch CNN. And the “Proposed”
represents that we cluster the data before giving it to the
proposed two-branch CNN. For our approach, the experiments
are repeated ten times by randomly selected training samples,
and the average results with standard variations are reported.

The HSI classification CNN developed in the early stage can
hierarchically construct high-level features in an automated
way. But they lack the method of rational use of spatial

information. And for the existing state-of-the-art methods, they
have been able to extract enough spatial–spectral information
through different technology, The DHCNet can earn 3%
improvement from the perspective of OA compared with the
classical CNN-PPF. They can even use images from other
sensors to increase the required information (such as MS-
CNN). However, since a one-to-one correspondence cannot
be made between the handcraft labeled semantic class and
the actual feature class, it becomes a key issue that reducing
the spectral difference within a class. Consequently, clustering
preprocessing is very critical.

The clustering results are shown in Fig. 8. For each image,
some classes with greater variation were divided into smaller
subclasses after clustering. Among them, (b), (b1), (b2) are
the new ground-truth maps of each data obtained, and (c),
(c1), (c2) are the detailed display. In the clustering process,
due to hardware limitations and a large amount of calculation,
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Fig. 11. Classification maps for the University of Pavia data based on different methods. (a) CD-CNN:94.55%. (b) MS-CNN:99.13%. (c) DHCNet:99.25%.
(d) Proposed:99.82%.

Fig. 12. Classification maps for the Xiong-An data based on different methods. (a) CD-CNN:96.04%. (b) MS-CNN:96.36%. (c) DHCNet:96.48%. (d)
Proposed:97.86%.

we crop the image by classes and cluster them separately.
The data set of Houston was divided into 17 classes from
15 classes. The classes of “Soil” and “Parking lot 1” were,
respectively, clustered into two subclasses. The data set of
PaviaU was divided into 9 classes from 11 classes. The classes
of “Bare soils” and “Sheets” were, respectively, clustered
into two subclasses. The data set of Xiong-An was divided
into 11 classes from 14 classes. The classes of “Water,”
“Corn,” and “Buildings” were, respectively, clustered into two
subclasses. For the experimental results of each data, we can
see the superiority of the clustering in the last two columns
of Tables V–VII. For example, the accuracy of classes with a

large difference (e.g., Soil and Parking lot 1 in Houston data) is
higher and more stable than other methods. And the proposed
method with clustering yields accuracy 98.23%, nearly 1.5%
higher than that of the method without clustering (96.96%).

At the same time, it can be seen from the three tables
that our approaches have better classification performance
than other methods. Taking the Houston data as an example,
the proposed method yields accuracy 98.23%, nearly 8%
higher than CD-CNN (i.e., 90.69%), and approximately 4%
higher than that of the CNN-PPF (i.e., 94.18%). Therefore,
it can be concluded that the proposed two-branch method can
result in higher classification accuracy and the clustering is
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Fig. 13. Overall classification accuracy (%) versus different numbers of
training samples per class for different methods in Houston data set.

a good strategy to reduce the within-class difference. We set
the number of training samples of all methods to be the same,
and the adjustment of parameters may cause the experimental
results to be slightly different from those in other literature.
Figs. 10–12 illustrate the classification map, and the visual
result corresponds to the results in Tables V–VII. The ground
cover maps provide test results overlaid on the original ground
truth maps, and it clearly shows that the classification maps
of our approach are less noisy than those of methods like CD-
CNN and MS-CNN, e.g., taking the Xiong-An as an example,
the areas of the pear tree have less mislabeled pixels.

Besides, we have explored the classification performances of
our approach with different numbers of training samples. The
experimental results of four methods based on the Houston
data set are illustrated in Fig. 13. The number of training sam-
ples per class changed from 50 to 300 with an interval of 50.
We can see that for all methods, the more the training samples,
the higher the classification accuracy. And when the number of
training samples is in the range of 150–200, the classification
accuracy can maintain a relatively high steady state. When the
number of training samples is more than 100, our approach
can always maintain the best classification performance.

The computational complexity of the training and testing
procedure of the proposed two-branch CNN is summarized
in Table VIII. For the training procedure, all the data sets are
trained in 300 epochs. Although the PCA preprocessing has
relatively reduced the computational cost, the overall system
is still very time-consuming. Because the clustering module
increases the number of subclasses, and we also expand the
data of some subclasses with a small sample size. At the
same time, the two-branch complex network also brings a
computational burden. Although the training procedure takes
a much longer time, it can also be observed that the testing is
relatively faster.

D. Discussion

With the help of the clustering module and SincNet, the intr-
aclass difference brought by spectral variation can be reduced.
And we can also observe from Tables V–VII that our method

TABLE VIII

DETAILED RUNNING TIME OF OUR APPROACH ON THREE DATA
(m: MINUTES s: SECONDS)

can indeed improve the classification accuracy for classes
with large intraclass differences in the original image (such
as the classes of Soil and Parking lot 1 in Houston Data).
Unfortunately, although the intraclass difference is quite large
for some classes, each subclass is also different from other
classes. In view of this situation, our approach has no great
advantage. In addition, our method does not make too much
effort to reduce computational complexity, and we need further
research.

IV. CONCLUSION

In this article, a novel automatic clustering-based two-
branch CNN is proposed for HSI classification. First, a cluster-
ing module is utilized to reduce the intraclass variation. Sec-
ond, DS-CNN is proposed to extract more meaningful spatial
information. Here, the double-stripe convolution kernel can
collect contextual interactional features in a specific direction.
Third, we modify the SincNet for HSI classification to give
more weight to the spectral shape, so that the finer spectral
pattern can be captured. The advantages of our approach come
from two aspects: the automatic clustering module can effec-
tively reduce intraclass differences and the two-branch CNN
can extract spectral and spatial features in a targeted manner.
Experimental results show that the proposed clustering-based
two-branch method outperforms other state-of-the-art methods
on three data sets.
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