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Abstract— Low-resolution ship detection from optical satellite
image sequences is critical in high-orbit remote sensing satellite
applications. However, it is still a difficult problem due to the
following challenges: 1) the size of the ship is tiny in the low-
resolution image; 2) the ship target is dim and the contrast with
the background is low; and 3) the interference of cloud and
fog covering is complex and changeable. For these reasons, the
targets are easily lost during the detection. In fact, the Clearer
the Objects against to the background, the more Confident
the Observers can detect it. In light of these considerations,
we propose a COCO-Net to detect the small dynamic objects
on low-resolution images in this article. First, the multiframe
images are associated by introducing motion information as
an effective compensation for small object features. Second,
an integrated dual-supervised network that processes single-level
tasks hierarchically is presented to adaptively enhance the input
data quality of object detection without being limited by diverse
scene disturbances. Third, a unified region of interest (ROI)-loss
scheme that modulates the loss function of the first component
by introducing ROI-masks from the second component is utilized
to make the first component also work for object detection.
In addition, we construct a new dataset for the small dynamic
object detection based on the GaoFen-4 satellite imagery. Com-
prehensive experiments on a self-assembled dataset from the
GaoFen-4 satellite show the superior performance of the proposed
method compared to state-of-the-art object detectors.

Index  Terms—Dual-supervised network, low-resolution
imagery, optical remote sensing (RS) images, ship detection.

I. INTRODUCTION

ITH the continuous development of modern remote
Wsensing (RS) technology, many RS images are regu-
larly produced, providing data for various research fields [1],
[2]. High-resolution images from low-orbit RS satellites have
attracted much attention because of their clear imaging proper-
ties [3]. However, the image’s width is relatively small, and it
takes a long time for the satellite to revisit the fixed area.
High-orbit RS satellites can exactly compensate for this
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drawback due to their high temporal resolution. Accordingly,
interpreting low-resolution images with larger widths is of
great research value.

In the RS community, marine object detection is a large and
active research area with many applications, including behav-
ioral analysis, military surveillance, and border protection.
Nevertheless, due to the ultralow spatial resolution images
from RS satellites, the ship object contains only a few pixels
of information, as shown in Fig. 1(a). Hence, no effective
shape and texture features can be used as the discriminant
basis. However, because of the high temporal resolution of the
satellite, continuous image sequences usually can be acquired.
It brings us inspiration to introduce temporal information to
make up for the lack of spatial information. In addition, the
complex cloud and fog may cover the targets and further
weaken the object features. It is known that the greater the
difference between the object and the background, the more
prominent the object will be. And then, the target will be easier
to detect. Therefore, how to mine more target information and
enhance the object feature from limited data has come into the
focus of research.

Previous researchers have made efforts in object enhance-
ment through multiple frame image fusion. A common
approach is to use background subtraction or frame differ-
ence methods to find objects in consecutive frames [4], [5],
[6]. However, these methods suffer from their own costly
drawbacks. Frame difference methods rely heavily on frame
registration. For the images with unpredictable clouds, they
may introduce much extra noise. Further, it usually requires the
time difference between consecutive frames to be small. Thus,
they are not suitable for RS images with changing cloudy
backgrounds and longer frame difference time. Moreover,
other works have attempted to extract multiframe informa-
tion from video data by tracking methods, or optical flow
[7]1, [8], [9]. These methods utilize the temporal context to
supplement the lack of information in a single-frame image
effectively, but they require more than five frames of image
data. It is a luxury for wide-swath RS image processing with
high timeliness requirements. Because the satellite has a fixed
shooting time interval, the more frames required, the longer
it takes. Therefore, the requirement of a simple and suitable
method to integrate multiframe information is put forward.

Additionally, we discover through rigorous experiments that
the object feature strength in the original images is closely
related to the precision of the outcomes of the subsequent
detection [10]. Thus, it is necessary to enhance input image
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(a)

Fig. 1. Schematic of continuous frame fusion images and their enhancement
results in different scenes. Columns (a) Illustrate original single-band image
blocks. Columns (b) Show fused three-channel image blocks. Columns
(c) Indicate the results after adaptive object enhancement processing.

quality before performing detection tasks. In recent years,
deep learning methods have shown impressive performance
in this field [11], [12], [13]. Generally, they are combined
with the object detection task as a preprocessing part, and
the common structures are demonstrated in Fig. 2(a) and (b).
Specifically, on the one hand, one of these structures connects
the different components through feature maps and utilizes
one-level supervision to regulate the whole network [14], [15].
They are highly integrated but cannot achieve the purpose of
weakening the difficulty of single-level tasks by a divide-and-
conquer strategy. On the other hand, the common multisuper-
vised structure divides the tasks hierarchically [16], while they
are separate from each other. They have their own loss function
and ground truth to supervise the network separately, and there
exists no information interaction during the training process.
This leads to the fact that the previous components will only
learn according to the ground truth defined on the basis of
human vision rather than machine perception. Our ultimate
goal is to get better object detection performance rather
than obtaining human-defined sharper images. Consequently,
an effective intermodulation mechanism with a novel loss is
necessary to integrate the different components.

Inspired by the above analysis, we believe that the core
idea of improving the detection rate of small dim objects in
low-resolution images is: Clearer Objects, the more Confident
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Fig. 2. Comparison between different approaches for multistage object
detection. Pipeline (a) corresponds to classic cascade structure, in which the
different components are connected by feature maps. Pipeline (b) represents
the dual-supervised structures with separated components. In contrast, our
proposed pipeline (c) uses dual-supervised joint mode for different component.

Observers. Specifically, we devise a novel dual-supervised
network with unified region of interest (ROI)-loss, called
COCO-Net, for detecting ships in low-resolution optical satel-
lite image sequences. First, we aggregate three consecutive
frames to compensate for small object features by introduc-
ing the motion information, thus transforming the original
single-band image into a three-channel image. The composed
images are then fed into a novel dual-supervised network for
feature extraction (FE), where the dual-supervised network
consists of an object enhancement component (OEC) and
an object detection component (ODC). The OEC consist of
multiple attention modules stacked with a detail feature com-
pensation (DFC) module added to integrate the features at dif-
ferent levels. The ODC is optimized for small target detection
based on the you only look once (YOLO) architecture [17].
We apply an energy filter kernel in the multiscale feature cross
fusion (MFCF) module of the ODC, which is obtained from
high-level feature maps and used to filter out the noise of mid-
level features. Thus, the multiscale features can be efficiently
aggregated without introducing noise. Besides, we design a
uniform ROI-loss scheme that constrains the OEC to focus
more on the target region according to the ROI information
obtained from the ODC. In addition, we construct a new
dataset based on the GaoFen-4 satellite imagery, consisting
of 3030 image patches in various scenes with accurate anno-
tations. Experimental results on this dataset demonstrate that
the proposed COCO-Net outperforms state-of-the-art (SOTA)
methods in terms of different evaluation indicators.
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The contributions of this study can be summarized as
follows.

1) We propose an inspired idea to address the challenges in
small object detection, i.e., incorporating suitable con-
secutive frames to compensate for small object features.

2) We develop a novel dual-supervised framework with
two components named COCO-Net to hierarchically
processes single-level tasks, which can adaptively
enhance the input data quality of object detection with-
out the limitation of diverse noise.

3) We design a unified ROI-Loss scheme to constrain the
first component to simultaneously serve the final object
detection task, which is the key to the composition of
the integrated network.

4) Experiments on our newly constructed database illustrate
the superior performance of the proposed method. Low-
resolution ship detection database (LSD) dataset taken
by the GaoFen-4 satellite consists of 3030 image patches
in various scenes with accurate annotations.

The rest of this article is organized as follows. Section II
investigates the related works, and Section III describes the
details of the proposed COCO-Net for low-resolution ship
detection. Experimental results and detailed comparisons are
shown in Section IV to verify the superiority of our method.
Finally, conclusions are drawn in Section V.

II. RELATED WORKS
A. Small Objects Detection Methods

Small object detection is an indispensable and challenging
problem in image understanding and the computer vision
field. In recent years, the compelling success of deep learning
techniques has pushed small object detection forward to a
research highlight. In general, there are two different defi-
nitions of small objects. One refers to objects with smaller
physical sizes in the real world, and the other can be found in
Microsoft COCO (MS-COCO) [18]. That is, objects occu-
pying areas less than and equal to 32 x 32 pixels are
regarded as “small objects”. Since RS images always have
lower resolution than natural images, ships with large physical
sizes are also small objects occupying only a few pixels
in RS images. Three difficulties are often encountered in
constructing an accurate small target detector: the lack of
appearance information separated from the background, the
high requirements for localization accuracy, and the limited
empirical knowledge [19]. Based on this situation, many
researchers have made efforts in different aspects.

On the one hand, multiscale feature fusion is regarded
as a crucial issue in improving the performance of small
object detection. In [20], a scale-aware network is proposed
to resize all objects on a similar scale and then train a single
scale detector. Singh et al. [25] designed a new framework
called scale normalization for image pyramids (SNIP), which
trained multiple scale-dependent detectors. Each of them was
in charge of a specific scale object. This is a roundabout
strategy that avoids the difficulty of training one model that
can accurately detect objects at all scales. Pang er al. [21]
presented the aggregate interaction modules to integrate the
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features from adjacent levels. It can effectively cope with
the great challenge of the variable scale of salient objects.
In 2022, a new enhanced multiscale feature fusion method
is developed [22]. The multiscaled atrous convolution oper-
ators are employed to make full use of context information.
Liu et al. [23] also introduced a novel stereoscopically atten-
tive multiscale (SAM) module to a lightweight network, which
can adaptively fuse the features of various scales.

On the other hand, data augmentation and training
strategy are also beneficial for small object detection.
Kisantal er al. [24] found that one of the factors behind the
poor detection performance for small objects is the lack of
representation of small objects in a training set. First, they
demonstrate that the detection rate can be effectively improved
by oversampling images containing small objects. Second,
they designed a data augmentation approach by copy-pasting
small objects through the segmented mask. Besides, litera-
ture [25] proposed a novel model called Scale Normalization
for Image Pyramids with Efficient Resampling (SNIPER).
It only processed context regions around ground truth instances
at the appropriate scale. Later, Kim er al. [26] designed a
scale-aware network (SAN). It first maps the convolutional
features obtained from the different scales onto a scale-
invariant subspace. Then, SAN and detection network are
trained simultaneously. In addition, Prakash and Karam [27]
utilized a generative adversarial network (GAN) to gener-
ate features that provide robustness for object detection on
reduced-quality images. Although these methods can improve
the small object detection performance, they are still unsuitable
for dim tiny marine object detection under unpredictable
clouds background.

B. Image or Object Enhancement Methods

Vision-based methods including object detection, activ-
ity recognition, efc., require visible images for supe-
rior performance. In early research, histogram equaliza-
tion [28], gamma transform [29], efc. are the simple and
straightforward methods. However, they sometimes prompt
over-enhancement, and other limitations. In [30], Dynamic
Histogram Equalization (HE)-based approaches are utilized to
overcome the above shortcomings and enhance the contrast.
Another prominent algorithm [31] enhance the image by intro-
ducing fuzzy contextual information about the images. In [32],
the author presented an improved Retinex model to enhance
the low-light images and reduce the intensive noise interfer-
ence. In 2009, He et al. [33] designed a dark channel prior
theory for image defogging, which has been widely applied.

Additionally, deep learning-based methods have also per-
formed well in this field [34], [35], [36]. In 2020, a semi-
supervised learning approach, deep recursive band network
(DRBN) [37], for low-light image enhancement was devel-
oped. It was well designed to extract a series of band repre-
sentations from coarse-to-fine and generated enhanced results
with well-reconstructed details with the help of this two-stage
design. In [38], an accurate and efficient single-shot object
detector (FAENet) with feature aggregation and enhance-
ment was proposed. They integrated a pair of novel feature
aggregation modules and two feature enhancement blocks
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object detection.

into the Single Shot MultiBox Detector (SSD) network to
improve the detection performance. In order to improve the
visual effects of weak vehicles in RS images, Gao et al. [39]
proposed a detection-guided CycleGAN to enhance the weak
targets for accurate detection. Besides, super-resolution meth-
ods are often chosen for reconstructing images [40], [41],
[42]. However, most of these methods enhance objects at the
extracted feature level, while it is also important to improve
the input data quality for low-resolution object detection.

C. Approaches for Reducing Background Interference

In many image interpretation tasks, such as object detection,
action recognition, etc., background interference is one of the
main reasons that affect the performance of the model. In [43],
Shen et al. designed a residual learning structure incorporated
with weakly supervised detection, which decomposes back-
ground noise and models clean data. In 2020, an improved
RBox-based object detection model is proposed [44]. It can
effectively reduce the interference of background pixels by
locating the objects more finely. To overcome the challenge
of detecting small infrared target under complex background,
study [45] defined an enhanced local contrast measure method
to enhance small targets and suppress complex background.
In [46], Wang et al. presented a debackground detail convo-
lutional network. Specifically, they enable the decomposer to
produce a detail layer by subtracting background interference
from the crowd images, which optimizes the learning process.

In addition to the above methods, multistage processing is
also an important idea. Yang et al. [47] designed a preiden-
tification mechanism and a cascaded detector for tiny faces.
The prerecognition mechanism first preidentified face region
candidates as regions of interest and then used them as inputs

B
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Overview of the proposed ship detection method COCO-Net. The method consists of two components: OEC for object enhancement and ODC for

to subsequent networks, leading to reducing background and
other extraneous information. In [48], a new pixel to global
matching network (PG-Net) framework is proposed, consisting
of a FE subnet and an object localization subnet. The PG-corr
module integrated into the object localization subnetwork can
effectively suppress background interference by narrowing the
matching area. In [49], the author introduced a cascade region
proposal network with soft-decision nonmaximal suppression,
improving the performance under complex background. How-
ever, the above methods mainly address the interference of
various ground objects rather than the cloud and fog occlusion.
These two types of backgrounds have different influences on
target detection; thus, they require further exploration.

[II. METHODOLOGY

The proposed network model COCO-Net is composed of
an OEC and an ODC. The overall framework is shown in
Fig. 3. Since the object size in ultralow-resolution images is
only a few pixels, it is necessary to perform effective feature
compensation for dynamic objects by integrating sequence
images. Following cropping, the image blocks are put into
the OEC to automatically improve the saliency of objects in
accordance with local scenes. Then the improved images with
clearer objects are trained by the ODC, which is optimized
based on YOLOVS backbone. Finally, it is worth noting that
the prediction boxes from the ODC are fed back to the OEC to
adjust the loss weights. More detailed descriptions are given
in the following subsections.

A. Multiframe Images Association Approach

The original RS images from the satellite are single-band
16-bit images with low spatial resolution, and the object only
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contains a few pixels. Accordingly, both the texture and color
information of the target are extremely insufficient. In this
case, it is necessary to compensate the input image with
effective object features to obtain a better detection effect.
A simple and practical approach is to correlate consecutive
images, which can enhance the target features by introducing
motion information. As shown in Fig. 1(a) and (b), we take
the three consecutive frames of images as the three channels
of the resulting image, respectively

I,="5hL, I,=D0L, I,=1 (1)

where I, I,, and I, are the R, G, and B band image in the
final pseudo-color image, respectively. I; is the ith frame of
the image sequence. The ship target is visually a point in the
original image, while the target becomes a sequence of colored
dots after the association of the image. Since the speed of
the ship is within a certain range, the distance between the
points is also within a certain range. Therefore, this scheme
can effectively enhances the ship target features, which can
improve the detection accuracy rate.

How many frames to correlate is a critical issue that
deserves careful consideration. On the one hand, integrating
more frames of image data can increase target information, but
it can also introduce more complex background information
and more interference. Moving clouds in other frames may
obscure the target in the current frame and weaken the target
features. On the other hand, it usually takes a certain amount of
time for a satellite to shoot an area. The more frames we use,
the longer the data generation time. However, high timeliness
is necessary for both military and civilian applications. Thus,
it is not the case that the more frames of the fused image,
the better the detection. Therefore, we use frame difference
method to correlate more than three frames and verify the
influence of the number of frames on the detection effect
through experiments. For example, the sequence number of
multiple frames is set to 1-k. The R and G band of fused
three-channel images are “1” and “2” frame images, respec-
tively. The B band is the resulting image of the 3-k frames
calculated by the frame difference method, which can be
described as

I, =1 )
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where | - | denotes the calculation of absolute value. In this
study, we choose 1, 3, 5, and 7 frames image sequences to
verify the detection effect. Experimental results show that
using three consecutive frames has a better detection effect.
So we final utilize three frame images to composite sample
image. Take part in Section IV for specific experimental
contents.

B. Framework of COCO-Net

The whole framework of COCO-Net consists of two compo-
nents, namely OEC and ODC. As shown in Fig. 3, the OEC
is utilized to sharpen the images and enhance the contrast
between the object and background. It is mainly constructed
by several residual attention blocks (RAB), which consist of
channel attention (CA) modules, pixel attention (PA) modules,
and multiple DFC modules for DFC. The ODC is used to
capture object features and detect them. It is modified from
YOLOVS for small objects and consists of an improved MFCF
module. The two components are tightly connected, and the
output feature map of OEC is fed into the ODC directly, which
can be expressed as

0 = Yopc(Yorc (Imu)) ©)

where I, and O represent the multiframe image and the
final detection result. Wopc and Wogc denote the calculation
process of the ODC and OEC components, respectively. Each
component has its own supervised ground truth, but is trained
uniformly.

The OEC first goes through a 3 x 3 convolution layer.
Then, it is constructed by stacking six RAB modules followed
by another convolution layer to extract useful features. Next,
it adds skip-connection to share the low-level details of the
image to enhance the feature. After that, the obtained feature
maps are fed into another convolution layer and a relu acti-
vation function again. The above process can be expressed as
follows:

Worc(Imu) = C(C(Fras(C(Imu1))) + Imul) (6)
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where C denotes the convolution and Frap represents the
operator constructed by the RAB module. At this point, the
OEC calculation is completed. The output images are utilized
to calculate loss along with ground truth and are treated
as input of the ODC. As shown in Fig. 4, each RAB is
composed of three convolution layers, a CA module and a
PA module. The specific structures of CA and PA modules
can be found in [50]. The output of each RAB is fed into the
DFC module. The reason for using this module is mainly to
minimize information loss of small targets in deep layers of
the network. This loss is irreversible and will accumulate with
the deepening of the layer, but it is very important for small
target detection. The structure of DFC is shown in the red box
in Fig. 4. The f;_l and f; denote i — 1th and ith level input
of the DFC module. And the f }d represent the downsampled
feature of f; . Then we utilized the convolution 3 x 3 (C?)
to extract features of the target in multiple levels. Finally, the
different features are fused. We can express it visually with
the following formula:

3 3 3
Mpre =C'[ TTC' (Fi @[ () eI (A | @
j=1 j=1 j=1

where Mpgc denotes the output of each DFC module and
the @ represents the concatenate operator. (J] T CH(S)) s
defined as

ﬁcj (fi) = Cu(Cazts ... C2(Ci(f7))) ®)

where (-) denotes the input data of each calculation module
and f; is represents the different level input of DFC module.
Based on the DFC module, high-resolution features with
detailed information can be used to compensate for the
semantics for detection, and the detailed features of the small
target can be preserved.

Furthermore, the ODC is constructed based on a one-stage
detection framework, such as YOLO [17]. The backbone
contains four FE modules, each of which includes five residual
units. Meanwhile, each FE module is followed by a convolu-
tion layer, batch normlization layer and leaky relu function
layer (CBL) block consisting of a convolutional layer, a batch
normalization layer, and a relu activation function layer. After
that, the output feature maps of the last three FE modules are
fed into the MFCF module. This process can be formulated as

voue(0) = (] e 050)))
Mess (1) = Relu(BN(C (1)) (10)
Mrx(I7) = HRi(If) (1D

where O’ represents the output of OEC component and I
denotes the input feature map for different module. Mcpr, and
Mgg denote the calculation process of FE module and CBL
block. (J[/_;R)(-) is defined similar with ([T%_,C;)(),
and R, denotes the residual blocks. F, represents the MFCF
operator described later. Generally, target extraction is
performed to effectively capture the features of the target
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region, while it may convolution out the object-like noise
and lead to a high false alarm rate. To suppress noise and
improve the signal-to-noise ratio of the target, we introduce
an energy filter kernel function in the MFCF module.

Specifically, we first construct an energy kernel that relies
on the energy distribution of the high-level feature. This step
is mainly achieved by pooling and convolution operations on
high-level features. Then, it is used to filter out background
noise in mid-level features, which is achieved by convolution.
Finally, the obtained pure target feature is added with the
low-level features to enhance the contrast of the target area.
After that, the signal-to-noise ratio of image can be effectively
improved and the false alarms are also be suppressed. The
specific process is formulated as

K, = ¢(Pm(Fhigh) * Pa(Fhigh))
F, = K¢ * Fuig + Flow

(12)
13)

where P, and P, are max pooling layer and average pooling
layer, respectively. * denotes the convolution operator. ¢(-)
denotes the sigmoid layer, and K, is the energy filter kernel.
K, * Fpig is the pure feature map after energy filtering and
F, denotes the output feature map with high signal-to-noise
ratio. Then the multiscale maps are fused through the feature
pyramid network (FPN) and path aggregation network (PAN)
module, which is popular in the YOLO detection framework.
Finally, we utilize three multiscale detection heads to predict
targets.

C. Unified ROI-Loss Scheme

A unified ROI-loss of pixel and bounding-box regression is
used to optimize the COCO-Net jointly. The first supervised
function for OEC is applied to mean absolute error (MAE),
called L1loss, which calculates the difference of all corre-
sponding pixels in the image. Although this function is simple,
many studies have verified that L1loss-based image restoration
tasks achieve better performance than L.2loss in terms of peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM)
metrics [51]. Therefore, L1loss is used by default in this work,
which is expressed as

1 n
Logc = p Z

i=1

y;l — OEC <Yi)re)

(14)

where yét stands for the ith pixel in ground truth and yl’;re
denotes the ith pixel in predict image. n is the pixel number
of the image.

It is worth noting that if a feature enhancement operator
is performed on the entire image, it is likely to introduce
unnecessary noise information. Hence, setting up a supervision
mechanism for OEC so that the network pays more attention
to the target area is very important for this dual-supervised
network. Based on this consideration, we feed the detection
boxes of ODC to OEC as ROI masks. Then assign different
weights to the pixels according to whether they are in the target
area when calculating the L1loss. When a pixel is within the
ROI mask, its weight is larger; otherwise, it is smaller. The
Logc loss is modified as

1 . .
Lyin= ;Z (a ygirt — OEC <Yi)re)
(15)

+ | vh - OEC (v,




XU et al.: COCO-Net: A DUAL-SUPERVISED NETWORK WITH UNIFIED ROI-LOSS

Original images

Fig. 6.
frames of image block.

2500 . . .

2000
o]
0
£ 1500
E
3
£ 1000
z

500

130 140 150 160 170 180 190 200 210 220 230 240 250 260
Gray value

Fig. 7.  Grayscale distribution of instance objects on the LSD database
(16 bits).

where o is set 0.8 and g is set 0.2 in this work. y’ denotes
that the pixel is inside the ROI-mask area, and y/ indicates
that the pixel is outside the ROI-mask area. Afterward, the
constructed ensemble COCO-Net is trained using this unified
loss scheme. The experimental results verify the effectiveness
of the scheme.

For the object detection task, the focal loss proposed
recently performed well [52]. It adds a modulation factor to the
cross-entropy loss to reduce the relative loss of easy samples
and focus on hard samples. The focal loss can be expressed
as

—a(1—y)" log(y'), y=1

Lf = AN /
—(1—a)(y) log(1=y'), y=0
where the factor (1 — y’)” to the standard cross-entropy crite-

rion. The balance factor a is added to balance the uneven
ratio of positive and negative samples. Moreover, the total

(16)
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Visualization of original RS images and the enhanced results for the LSD database. The pseudo-color image is obtained by superimposing multi

TABLE I
TRAINING PARAMETERS
Paramers OEC ODC
Resized Image Size 416 pixels 416 pixels
Initial Learining rate 0.00001 0.001
Weight Decay - 0.0005
Optimizer Adam Adam
Loss function L1Loss YOLOLoss
Max Iteration 500 500

loss needs to be weighted with the classification loss (L),
intersection over union loss (Lj,y) and confidence 108s (Lconf)-
Among them, IoU loss is the Complete-IoU (CloU) loss,
including the aspect ratio factor and confidence loss is binary
cross-entropy loss (BCEloss). More details can be seen in
literature [53]. Consequently, the total loss Lopc is defined
as follows, and A;, 4, and A3 are the set parameters used to
balance the weights between these losses

Lopc = A1+ Leont + 42 - Liou + 43 - L. (17)

According to the experiment experience of former researchers,
the weight ratio of these three losses should be the same. It is
reasonable because these losses are all equally important for
accurate detection. Consequently, we set all three coefficients
A], /12, and /13 are 1.

IV. EXPERIMENTS

In this section, the efficacy of the proposed COCO-Net
is verified, and we compare it with SOTA methods on our
newly constructed LSD dataset from the GaoFen-4 satellite.
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Fig. 8.
the images in the second and fourth rows are the corresponding target enhanced image patches.

This article mainly aims to detect moving ships in high-
orbit satellites’ ultralow resolution images. First, experimental
conditions are described, including datasets, evaluation met-
rics, implementation details, and baseline. Second, detailed
ablation experiments are performed, and the impact of each
proposed scheme on the final detection performance is dis-
cussed. Finally, experiments comparing the proposed approach
with SOTA methods are conducted on the LSD dataset, and
the results are analyzed and visualized.

A. Experimental Conditions

1) LSD Database: To evaluate the performance of the
proposed method, we conduct experiments on continuous
frame image data of the GaoFen-4 satellite and develop a
low-resolution ship detection database (namely, LSD Data-
base). The original RS images can be seen in Fig. 6. The spa-
tial resolution is 50 m, and the spectral range is 0.45-0.52 um.
The size of original RS images is 10240 x 10240 pixels.
Furthermore, due to the low image resolution, our targets are
mainly various types of aircraft carriers and large warships.
Their size range is about 120-300m, which is about 2—6 pixels
in a single frame image and falls into the category of dim tiny
targets. At the same time, the real ship objects in RS images
are annotated by professional ship target interpreters. They

Example images and their bounding box annotations on LSD dataset. The images in the first and third rows are the original RS image patches, and

utilize more than one valid information to discriminate the
ship object and the result is quite credible.

To correlate multiframe features, we construct a synthetic
image with three sequence frames as R, G, and B channels,
respectively. That is, the model input contains an image
sequence of three adjacent frames. And the subsequent oper-
ations are all implemented based on these synthetic images.
In addition, due to the large size of the original RS image,
we cut the images to 256 x 256 pixels. At the same time,
to avoid the breakage of the target sequences, we cut the
images with a 15% overlap. Moreover, since the GaoFen-4
data obtained is limited, we utilize the simulation method
for object augmentation [24] to simulate more samples.
We first separate the sea background, various ships,, and clouds
image blocks, then randomly select one of each category
and fuse them through Poisson calculation. Thus, the final
dataset contains a total of 3030 images containing a total of
3497 instances. Among them, there are 2490 real samples,
including 460 positive sample images and 2030 negative
sample images, and a total of 1877 ship instances. There are
540 simulation sample images, including 1620 simulated ship
instances. The ratio of positive to negative sample images
is 1:2. For the LSD database, 1939, 485, and 606 images are
used for training, validation, and testing, respectively.
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Since the unique properties of our dataset, detecting objects
in our dataset have several distinctive challenges. First, low
spatial resolution of objects. We can see from Fig. 6 that
all instances have a small size (< 15 pixels), and the
multiframe-enhanced instances are less than 50 pixels in size.
This poses a great challenge to detection methods. Second,
the large grayscale difference of objects. In original 16-bit RS
images, the gray value of instances varies from 130 to 260.
Some dim objects in the original image cannot even be seen.
Third, the number of instances in different grayscale intervals
is not balanced, which can be seen as Fig. 7. The instances
with grayscale values less than 160 are only about 5% of
all instances. This brings great difficulty to accurate target
detection.

We also constructed the ground truth of target enhancement
image in addition to the ground truth of target box annotation,
because the COCO-Net is a dual-supervised framework. Gen-
erally, some objects will be under-salient or over-exposed if the
same algorithm is applied to process all image patches. Hence,
we individually adjust the contrast and brightness of each
image patch according to its background, making the target
more salient. Specifically, We first divide the different image
patches into several groups according to the scenes. Then,
we set different parameters of the enhancement algorithm to
adjust the brightness and contrast of the images in each group
to make the target more salient. After that, we adjust the image
patches with bad enhancement effect one by one, to ensure
that all the samples get the best image enhancement effect.
Consequently, the network can be trained using the ground
truth, and perform adaptive target enhancement processing
according to different scenes.

2) Implementation Details: The proposed method is imple-
mented using the PyTorch deep learning framework and
is trained on a workstation with an NVIDIA GeForce
RTX 2080 graphics processing unit (GPU) with 8 GB memory.
To compare the proposed COCO-Net with other methods
more fairly, the training hyperparameters are set to be the
same as the comparison methods. The specific experimental
parameter settings are shown in Table I. It’s worth noting that
we followed YOLO’s implementation trick, and fix the input
image size to 416 x 416 pixels by BiCubic interpolation,
which can achieve better detection results. The number of
training epochs is 500. The IoU threshold is set to 0.2 to obtain
better results because the object size was small. The confidence
threshold is set to 0.3, and the nonmaximum suppression
(NMS) threshold is 0.5. The initial learning rate of OEC and
ODC are 1 x 1073 and 0.001, and the final learning rate are
1 x 107 and 1 x 1079, respectively. The two learning rates
are updated using a cosine update strategy. Assume the total
number of batches is T, [ is the initial learning rate, then at
batch ¢, the learning rate /; is computed as

l tm
I, = 5(1 +cos(?>).

3) Evaluation Metrics: To quantitatively evaluate the ship
detection performance of these methods, we chose accuracy
evaluation indexes from the RS community (P4, P, and Py)
and deep learning community [precision, recall, and average

(18)
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precision (AP)]. However, to compute these indicators, the true
positives (TPs), false positives (FPs), false negatives (FNs),
and true negatives (TNs) in the detection results need to be
found first. Further, Intersection over Union (IoU) is required,
which represents the overlap ratio between the prediction box
S, and ground truth box Sg. It can be defined as

ToU = (S, N Se)/(Sp U Se) (19)

If ToU > the setting threshold value, this predicted box is
considered as TP, otherwise it is considered as FP. If no
predicted box covers the target area, it is treated as a FN.
Otherwise, the region is a TN.

Consequently, the detection probability (P;), missed-
detection probability P,, and false alarm probability Py are
defined as

P; = TP/GT (20)
P, = EN/GT 2n
P; = FP/(TP 4 FP). (22)
The precision and recall can be calculated as follows:
Precision = TP/(TP + FP) (23)
Recall = TP/(TP + FN) (24)

where the GT is the number of true objects. It is not sufficient
to evaluate the performance of the model only using above
indexes.

Another comprehensive indicator, the precision-recall curve,
shows the tradeoff between precision and recall for different
thresholds. It is the average value of precision for each
object category when the recall varies from O to 1. The
closer the curve is to the upper right corner, the better
the performance of the model. Furthermore, compared with
other indexes, the AP score reflects the performance of the
detection model more accurately and intuitively. It is shown as
follows:

1
AP = / P(R)dR (25)
0
where P(R) is the precision-recall (P-R) curve. The model
detection speed can be quantitatively evaluated using time (¢)
and frames per second (FPS)

FPS = 1/1. (26)

B. Analysis of Different Scheme Settings

1) Analysis of Multiframe Correlation Scheme: Addition-
ally, although GaoFen-4 is a geostationary satellite that
remains stationary toward the Earth, clouds are also moved
by atmospheric flow. Therefore, as the number of frames
increases, the cloud will move and causing the cloud color
separation, as shown in Fig. 8. This will complicate the
background to some extent. Therefore, it is a problem to con-
sider whether the more frames the better the detection effect.
We conduct comparative experiments on different methods
based on different frame numbers to verify the correctness
of the proposed continuous frame correlation strategy. The
specific results can be seen in Table III. For our approach,
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TABLE 1I
QUANTITATIVE EVALUATION OF THE PROPOSED MODULES IN THIS ARTICLE

Methods Cloudless Thin cloud | Broken cloud| Thick cloud Overall Inference time
Recall ~ Precision AP
SF + YOLOv5S 76.56 73.27 70.58 71.93 72.95 94.21 72.64 23.22
SF + ODC 78.03 76.57 74.79 75.22 76.08 94.95 75.20 21.03
MF + ODC 82.23 80.71 76.81 79.73 80.82 94.79 81.78 21.08
MF + OEC + ODC 89.28 87.41 80.28 85.27 84.30 95.83 85.05 32.31
MF + COCO-Net 93.30 90.33 85.42 87.25 90.65 96.69 89.61 32.27

Note: The units of the above accuracy indexes are all percentages (%), and the time is given in milliseconds (ms / image).

TABLE III

COMPARATIVE EXPERIMENTAL RESULTS USING IMAGES
WITH DIFFERENT FRAME NUMBERS (k)

Methods ‘ k ‘ Recall Precision AP

1 79.89 96.31 80.23

COCO-Net 3 90.65 96.69 89.61
5 86.72 94.22 85.23

7 82.93 92.55 83.87

3 83.29 95.33 84.23

LSTS 5 87.10 95.82 87.39

7 86.44 94.79 86.76

when the frame number (k) is larger than 3, the last channel
image is obtained through the frame difference method. It can
be observed that the recall rate of detection results based on
single-frame data is about 11% lower than that of three-frame
images. This means that many ships are not detected, and
we find that most of them are very dim ships. Moreover,
the results of five-frame images (the third row) denote that
the addition of more frames increases the detection rate but
introduces additional noise.

Compared to five-frame images, the seven-frame images
causes coverage interference to some targets, thereby reducing
the detection rate. We also compare COCO-Net with a good
method [learnable spatio-temporal sampling (LSTS)] for treat-
ing sequence frame images as video streams [54]. Although
the result of five-frame images is better than three-frame
images, the detection rate of which is also 3% lower than
that of COCO-Net. In the meantime, due to the characteristics
of satellite shooting, the time consumption caused by each
additional frame is also unacceptable. Thus, we choose three
frame image to composite the final image and regarded them
as R, G, and B bands of the synthesized images, respectively.
The method of correlating multiframe images mentioned in
this article is simple, but it is also very effective and necessary.

2) Analysis of Differentn Module: In this module compar-
ison experiment, the constructed LSD dataset is utilized to
verify the effectiveness of our proposed module, including the
multiframe enhancement strategy, dual-supervised framework
with OEC and ODC components, and ROI-Loss control strat-
egy. We set YOLOVS as the baseline network and added each
module in order. The specific results are shown in Table II.

TABLE IV

EXPERIMENTAL RESULTS OF HYPERPARAMETER
o AND f# ON LSD DATASET

Hyper-paramers ‘ AP
a=09 p=0.1 88.37
a=08 p=02 89.61
a=07 pB=03 87.52
a=06 pB=04 86.33
a=05 pB=05 86.49

“SF” and “MF” represent single-frame images and multiframe
images, respectively. For the fairness of the experiment, except
for the module for comparison, the parameters of other parts
are consistent. We also give the AP value of targets in different
scenes, including cloudless, thin cloud, broken cloud, and
thick cloud. Different clouds have different interference to the
target. It can be observed that the optimized ODC component
is better for target detection in broken cloud scenes with
more background interference. The dual-supervised framework
improves the performance of target detection in cloud-free
scenes more significantly.

Furthermore, we can also see the overall AP value of the
improved ODC (second row in Table II) is 4% higher than
the baseline network (first row in Table II). This shows that
ODC component indeed has better detection performance for
small ships in low-resolution imagery. Similarly, the third
row indicates that the ODC component is used to process
multiframe images. The AP and Recall rate is increased
by about 5%. The fourth row represents that the OEC and
ODC components process multiframe images sequentially,
but they are separated during training. The AP and Recall
rate is increased by about 8%, showing a substantial positive
effect. The last row illustrated the results of COCO-Net for
multiframe images. The AP and Recall rate is about 5% higher
than the previous one, which denotes the ROI-Loss strategy for
the dual-supervised framework is important. Although there is
an increase in inference time, this is acceptable.

As shown in Fig. 9, we visualize the feature map from
COCO-Net and other compared models. The images in column
(a) are original RS images. We also give the corresponding
enhanced images in column (b) for a more intuitive view of
the ship’s position. The images in (c), (d), and (e) are feature



XU et al.: COCO-Net: A DUAL-SUPERVISED NETWORK WITH UNIFIED ROI-LOSS

()

(©)

5629115

Fig. 9. Validity verification of the different modules. (a) and (b) Illustrate the original images and object-enhanced images, respectively. (c), (d), and (e) Show
the feature maps of COCO-Net, COCO-Net without MFCF and detection model without OEC. Red boxes denote a noise point in images.

TABLE V
EVALUATION INDEXES OF DIFFERENT METHODS BASED ON LSD DATASETS

Method Accuracy (Remote Sensing) Accuracy (Deep learning) Speed
Py Pm Py Recall Precision AP Time FPS

FasterRCNN 76.46 23.54 9.99 76.46 90.01 75.64 38.11 26.24
SSD 78.32 21.68 7.22 78.32 92.78 77.57 22.15 45.14
FMSSD 79.38 20.62 6.84 79.38 93.16 78.85 34.49 28.99
R-DFPN 80.14 19.86 6.23 80.14 93.77 79.93 39.67 25.21
YOLOVS5 80.26 19.74 5.62 80.26 94.38 80.33 23.32 42.89
R3-Net 84.39 15.61 4.94 84.39 95.06 84.20 35.71 28.00
MSCNN 82.41 17.59 5.71 82.41 94.29 81.93 31.66 31.59
SME-Net 85.87 14.13 4.73 85.87 95.27 85.31 29.05 34.42
CC-Net 87.33 12.67 5.64 87.33 94.33 87.11 34.49 28.99
COCO-Net 90.65 9.35 3.31 90.65 96.69 89.61 32.27 30.98

Note: Except for AP, which has no units, the units of the above accuracy indexes are all percentages (%), and the time is given

in milliseconds (ms / image).

maps of different models and are illustrated by superimposing
them on the enhanced images. Among them, the images in
(c) are the detected feature map from COCO-Net. It is obvious
that the ship feature has been well extracted. Compared with
the feature maps generated from COCO-Net, the feature maps
processed by the dual-supervised model without the MFCF
module show more background noises. In particular, there is an
obvious noise in the red circle. The image in column (b) shows
that it has comparable feature strength to the ships. But the
COCO-Net feature map can not only better emphasize the
targets’ features but also effectively suppress the interference
information. In addition, the images in column (e) illustrate the
feature maps generated by a single detection model without
OEC. That is, the input images are the original unenhanced
data. Obviously, the captured target features in feature maps

are weaker than those of the COCO-Net. In conclusion, the
effectiveness of the proposed dual-supervised framework and
the MFCF module can be verified.

3) Analysis of the ROI-Loss Scheme: This section focuses
on finding the best hyperparameters a and S of the pro-
posed ROI-Loss. We effectively correlate OEC and ODC via
ROI-mask. It can be seen in Table IV that our model with
different parameters consistently improves over the baseline.
The best performance is achieved when the loss with a
0.8 and f = 0.2. This shows that the target enhancement
component should pay more attention to the target region
and increase the weight of these pixels. However, when o =
0.9 and g = 0.1, the AP value has dropped. It indicates that
the background cannot be completely discarded either, and it
still has an impact on the final detection performance.
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Fig. 10. Detection results of different methods on LSD database. Green boxes denote the ground truth boxes, which illustrated based on the enhanced images.
Blue boxes represent the detected positive objects, while orange boxes show the undetected positive samples. Red boxes denote the false alarms.

C. Detection Results and Comparison

To illustrate the detection performance of COCO-Net,
we conduct comparative experiments on the LSD database to
compare the proposed method with SOTA object detection
methods. These comparison methods include classic object
detection methods such as faster-region convolution neural
network (Faster-RCNN) [55], SSD [56], improved feature-
merged single-shot detection (FMSSD) [57], and YOLOVS.
There are also some small object detection methods, includ-
ing R3-Net [58], multiscale convolutional neural network
(MSCNN) [59] and split-merge-enhancement network (SME-
Net) [10]. In addition, the multistage method chained cascade
network (CC-Net) [14] and the method specifically ship detec-
tion rotation dense feature pyramid networks (R-DFPN) [60]
are also added for comparison. For effective validation of the
different methods, all experiments are performed based on
three-frame superimposed data. To be fair, the hyperparameters
of all methods are set the same except for different modules.

The comparative experiments are also extensive. For methods
with open-source code, we leverage them directly for testing.
And for popular detectors like Faster R-CNN, the MMDetec-
tion project is utilized.

We compare the COCO-Net with other SOTA methods
based on the LSD database. The results are shown in Table V,
where the optimal results are shown in bold. It can be seen
that the AP of COCO-Net for small marine ship detection
reaches 89.61% and is significantly higher than that of the
other detectors investigated. Moreover, the recall and pre-
cision are also increased. In comparison with the models
designed for detecting small objects, a multistage network
such as CC-Net shows better performance. Our approach
combines the multistage network architecture with small
target detection technology, which achieves better detection
results. For the RS evaluation community, COCO-Net also
performs well. Compared with early classic detection algo-
rithms, such as FasterRCNN and SSD, our approach produces
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Fig. 11. PR curves achieved by different methods on LSD dataset.

an approximately 13% improvement in detection probability
(P;). At the same time, the P; of COCO-Net is 5% higher
than the best-performing small target detection method SME-
Net. In addition, although its inference speed is not the fastest,
COCO-Net still performed well in the studies we investigated.
Besides, the PR curve for each model is illustrated in Fig. 11.
PR curve is a curve with precision as the vertical axis and
recall as the horizontal axis. Generally, precision and recall
rate vary with different confidence thresholds, and the higher
the accuracy, the lower the recall rate. It is difficult to define
the true performance of a model from a single set of Precision
and Recall values. Therefore, the precision and recall values
under all the confidence threshold values are used to construct
a curve, and the larger the area contained in the curve, the
better the performance of the model. Then, it can be clearly
seen that COCO-Net has a stronger performance advantage
than other compared methods.

We also give the intuitive visual detection results, as shown
in Fig. 10. The ground truth boxes are illustrated on the
enhanced images to clearly exhibit the ship. For the results of
compared methods, the detection boxes are illustrated on the
original RS images. Notably, YOLOVS5 or other methods in the
YOLO family have superior detection performance in nature
images containing multiscale objects. But it does not have a
processing mechanism for dim and small targets in ultralow
resolution images, so it generally performs in RS images.
CC-Net achieves relatively good results through the chained
cascade structure, which can handle easy and difficult samples
by level. In SME-Net, a split-and-merge module is proposed to
eliminate salient information about large targets and highlight
the features of small objects. Hence, it can be obtained better
detection results for small targets. However, their detection
effects are still not good enough for some dim objects whose
gray value is close to the background. Among all the methods
evaluated, COCO-Net has better detection performance than
other methods. It has fewer missed targets (orange boxes) and
false alarm targets (red boxes).

D. Discussion
The proposed dual-supervised COCO-Net provides a uni-
versal learning framework capable of hierarchically processing
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target tasks. It is suitable for different domains, and more
layers of supervision can also be added. However, it is
important to note that although all levels have their own
supervision, a regulatory mechanism is required to keep it still
serving the final task. This is also the key to distinguishing
it from other multisupervised networks. Additionally, a very
difficult problem in the marine object detection from optical
RS images is the complex and changeable cloud and fog
interference. Earlier approaches attempted to process it differ-
ently through scene classification. However, class division is a
discrete process, so it is still difficult to effectively process the
intermediate scene. In our approach, the target enhancement
component can adaptively improve the contrast between the
targets and background in different scenes. We can observe
from Table II that the approach proposed in this study shows
a huge advantage. Further, we will conduct more in-depth
exploratory research from the view of the lightweight model in
the follow-up research. It is also important to put the method
into practice.

V. CONCLUSION

In this study, a well-designed dual-supervised framework
is proposed for low-resolution optical satellite imagery ship
detection. First, the superimposed sequence images are gener-
ated through a preprocessing module, which can enhance small
object features by introducing the moving optical flow infor-
mation of the target. Second, we treat the object detection task
hierarchically. The target region contrast is adaptively adjusted
first to enhance its saliency through the target enhancement
component. Then, the small ODC with a novel MFCF module
avoids incorporating background noise and achieves accurate
object detection. Finally, an ROI-Loss scheme is proposed to
regularize the whole network so that the more ideal input
data for object detection can be obtained. We train the whole
network uniformly to make the object enhancement network
serve the object detection task. The experiments on our newly
constructed database: LSD, demonstrate that the proposed
COCO-Net is effective and important.
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