IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 12, DECEMBER 2021

10227

PSGAN: A Generative Adversarial Network for
Remote Sensing Image Pan-Sharpening

Qingjie Liu
Xiangyu Liu

Abstract— This article addresses the problem of remote sensing
image pan-sharpening from the perspective of generative adver-
sarial learning. We propose a novel deep neural network-based
method named pansharpening GAN (PSGAN). To the best of
our knowledge, this is one of the first attempts at producing
high-quality pan-sharpened images with generative adversarial
networks (GANs). The PSGAN consists of two components: a
generative network (i.e., generator) and a discriminative network
(i.e., discriminator). The generator is designed to accept panchro-
matic (PAN) and multispectral (MS) images as inputs and maps
them to the desired high-resolution (HR) MS images, and the
discriminator implements the adversarial training strategy for
generating higher fidelity pan-sharpened images. In this article,
we evaluate several architectures and designs, namely, two-stream
input, stacking input, batch normalization layer, and attention
mechanism to find the optimal solution for pan-sharpening.
Extensive experiments on QuickBird, GaoFen-2, and WorldView-
2 satellite images demonstrate that the proposed PSGANs not
only are effective in generating high-quality HR MS images and
superior to state-of-the-art methods but also generalize well to
full-scale images.

Index Terms— Convolutional neural network (CNN), deep
learning, generative adversarial network (GAN), pan-sharpening,
residual learning.

I. INTRODUCTION

ECENTLY, a lot of high-resolution (HR) optical Earth

observation satellites, such as QuickBird, GeoEye,
WorldView-2, and GaoFen-2, have been launched, providing
researchers in the remote sensing community a large amount
of data available for various research fields, such as agricul-
ture [1], land surveying [2], and environmental monitoring [3].
To obtain better results, many of these applications require
images at the highest resolution both in spatial and spectral
domains. However, due to technical limitations [4], satellites
usually carry two kinds of optical imaging sensors and acquire
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images at two different yet complementary modalities: one
is an HR panchromatic (PAN) image and another one is a
low resolution (LR) multispectral (MS) image. Pan-sharpening
(i.e. panchromatic and MS image fusion), which aims at
generating high-spatial-resolution MS images by combining
spatial information and spectral information of PAN and
MS images, offers us a good solution to alleviate this problem.

Pan-sharpening could be beneficial for many practical appli-
cations, such as change detection and land cover classifica-
tion, so it has gained increasing attention within the remote
sensing community. Many research efforts have been devoted
to developing pan-sharpening algorithms during the last
decades [5]-[11]. The most widely used approaches are
so-called component substitution (CS) methods, popularized
because of their easy implementation and low computation
cost in practical applications [11]-[13]. The basic assumption
of CS methods is that the geometric detail information of an
MS image lies in its structural component that can be obtained
by transforming it into a new space. Then, the structural com-
ponent is substituted or partially substituted by a histogram
matched version of PAN to inject the spatial information.
Finally, pan-sharpening is achieved after an inverse transfor-
mation. The PCA- [14], [15], the IHS- [6], [12], and the
Gram—Schmidt (GS) transform [16]-based methods are those
of the most widely known CS methods.

Another popular family is multiresolution analysis
(MRA)-based methods. It has a well-known French name
amélioration de la résolution spatiale par injection de
structures (ARSIS) [17], which means enhancement of the
spatial resolution by structure injections. The MRA-based
methods assume that the missing spatial information in MS can
be inferred from the high frequency of the corresponding PAN
image. To pan-sharpen an MS image, multiresolution analysis
algorithms, such as discrete wavelet transform (DWT) [18],
“a trous” wavelet transform [19], or curvelet transform [20],
are applied on a PAN image to extract high-frequency infor-
mation and then inject it into the corresponding MS image.

In addition, pan-sharpening can be formulated as an inverse
problem, in which PAN and MS images are considered as
degraded versions of an HR MS image, and it can be restored
by resorting to some optimization procedures [21]-[23]. This
is an ill-posed problem because much information has been
lost during the degrading process. To obtain the optimal
solution, regularizer [21] or prior knowledge [22] is added
into formulations, or pan-sharpening can be addressed from
the perspective of machine learning. For instance, Li et al. [24]
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and Zhu et al. [25], [26] modeled pan-sharpening from
compressed sensing theory. Liu er al. [27] addressed pan-
sharpening from a manifold learning framework.

Recently, deep learning techniques have achieved great
success in diverse computer vision tasks [28]—-[32], inspiring
us to design deep learning models for the pan-sharpening
problem. Observing that pan-sharpening and single-image
super-resolution share a similar spirit and motivated by [28],
Masi et al. [9] proposed a three-layered convolutional
neural network (CNN)-based pan-sharpening method and
obtained improved results than traditional algorithms, such as
BDSD [33] and AWLP [34]. Following this work, increasing
attention has been paid to deep learning-based pan-sharpening.
For instance, Zhong et al. [35] presented a CNN-based hybrid
pan-sharpening method. Different from [9] that generates the
pan-sharpened MS images directly, Zhong et al.’s work first
enhances the spatial resolution of an input MS with the
SRCNN method [28] and then applies GS transform on the
enhanced MS and the PAN to accomplish the pan-sharpening.
Rao et al. [36] proposed a CNN-based pan-sharpening model
built on top of SRCNN, in which SRCNN was employed
to learn the difference between upsampled MS image and
ground truth. The final results were obtained by adding the
predicted difference image to the upsampled MS. Similarly,
Wei er al. [37] proposed a much deeper network (11 layers)
to learn the residual images.

Recent studies [38]-[40] have suggested that deeper net-
works will achieve better performance on vision tasks. How-
ever, training becomes very difficult with depth increasing.
Residual learning [41] eases this problem by introducing
shortcut connections between different layers of a network,
allowing training networks much deeper than previous ones.
Pan-sharpening could also be improved by residual learning.
Although Rao et al. [36] and Wei et al. [37] used the concept
“residual network,” the networks employed in their methods
are built with plain units. The depth of their networks is still
shallow. The first attempt at applying the residual network is
PanNet [10]. They adopt a similar idea to [36] and [37] but
employ ResNet [41] to predict details of the image. In this
way, both spatial information and spectral information could
be preserved well.

Although great advances have been made in this field,
there is still a great gap between the synthetic HR MS
and the real one. It is still a challenging problem for
researchers in the remote sensing community to obtain high
spectral and spatial fidelity pan-sharpened images. To fur-
ther boost the performance of pan-sharpening networks and
obtain high-quality pan-sharpened images, in this article,
we reformulate pan-sharpening as an image generation prob-
lem and explore the utilization of generative adversarial net-
work (GAN) [42], [43] to solve it. The GAN framework
is a powerful generative model and was first introduced by
Goodfellow et al. [42]. In contrast to previous networks
that have a unified architecture, GANs have two individual
components: one generator that is trained to generate images
indistinguishable from real ones and one discriminator that
tries to distinguish whether the generated images are real or
fake. With this perspective, this article proposes pansharpening
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GAN (PSGAN), a GAN that could produce high-quality
pan-sharpened images conditioned on the input of PAN and
LR MS images.

This is an extension of our previous work [44], which is
the first work that addresses the pan-sharpening problem from
the perspective of generative adversarial learning. Compared
with [44], background knowledge about GAN is presented.
We give more details about the architecture of the proposed
PSGAN and evaluate several possible architecture configura-
tions of the PSGAN. We enlarge the data set and conduct
extensive experiments to demonstrate the effectiveness and
superiority of it. The main contributions of this article are
as follows.

1) We address the pan-sharpening problem from the
perspective of image generation and develop novel
GANs for solving it.

2) To accomplish pan-sharpening with the GAN frame-
work, we design a basic two-stream CNN architecture
as the generator to produce high-quality pan-sharpened
images and employ a fully convolutional discriminator
to learn adaptive loss function for improving the quality
of the pan-sharpened images.

3) We evaluate various configurations of the proposed
PSGAN and distill important factors that affect the
performance of the pan-sharpening task.

4) We demonstrate that the proposed PSGAN can pro-
duce astounding results on the pan-sharpening problem.
Fig. 1 shows one example result produced by our
method. Codes are available.!

The remainder of this article is organized as follows.
Backgrounds and the theory of GANSs are briefly introduced
in Section II. Section III formulates pan-sharpening from
the perspective of generative adversarial learning and gives
details of proposed PSGAN architecture. Experiments are
conducted in Section IV. Finally, this article is concluded
in Section V.

II. GENERATIVE ADVERSARIAL NETWORKS

Given a set of unlabeled data, generative models aim at
estimating their underlying distributions. This is a highly
challenging task, and inference on such distributions could
be computationally expensive or even intractable. Recently
proposed GANs (GANs) [42] provide an efficient framework
to learn generative models from the unlabeled data.

GANs learn generative models by setting up an adver-
sarial game between a generator neural network G and a
discriminator neural network D. For any given data set {x},
the generator G learns the distribution of the data by mapping
a random sample z from any distributions (e.g., the Gaussian
distribution or uniform distribution) to a sample x from the
data space. The G is trained to produce samples that cannot
be distinguished from the real samples. The discriminator D
outputs a scalar indicating the probability that the samples are
produced by G, or it is from the real distribution. This process
can be formulated as a two-player min—-max game and written

Uhttps://github.com/zhysora/PSGan-Family
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Fig. 1.

as follows:
mcgn mgx V(D’ G) = ExNPdala(x) [log D(X)]
+Ezep,mllog(1 — D(G(@))] (1)

where pga (X) is the distribution of the real data, and x is a
sample from pgy,(x). Correspondingly, p,(z) is an arbitrary
random distribution, and z is a sample drawn from it. The first
term in the right side of (1) indicates the probability of the
discriminator determining a sample being a “real” data, while
the second term indicates the probability of the discriminator
identifying a sample being “fake.” D tries to assign correct
labels to both real and generated data by maximizing the first
term to 1 and the second term to 0. In contrast, G takes a
random noise z as input and tries to generate a sample that as
indistinguishable from the real one as possible by minimizing
log(1 — D(G(z))). An illustration of this procedure is given
in Fig. 2.

Equation (1) can be optimized in an iterative way by fixing
one parameter and optimizing another one. When G is fixed,
the optimization of D can be considered as maximizing the
log-likelihood of the conditional probability p(Y = y|x),
where Y is the probability that the sample x comes from
the real data (y = 1) or the fake data (y = 0). When
D is fixed, the objective of G is minimizing the
Jensen—Shannon divergence between the real data distribution
Pdata and the fake data distribution pg (here, ps denotes
distribution learned by the generator G). It can be proved that
G has an optimal solution pg = pgaa [42]. Given enough
capacity and training time, the generative neural network
and the discriminator network will converge and achieve a
point where the generator produces samples so real that the
discriminator cannot distinguish them from the real data.
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Example results of our PSGAN method. (c) Desired HR MS images generated from (a) PAN and (b) LR MS. (d) Ground-truth HR MS images.

Fake/Real

Fig. 2. Illustration of the generative adversarial framework. G is a generator
accepting a random signal z and trained to generate output that cannot be
distinguished from a real data x by a discriminator D.

III. PSGAN
A. Formulation

Pan-sharpening aims to estimate a pan-sharpened HR MS
image P from an LR MS image X and an HR PAN image Y.
The output images should be as close as possible to the ideal
HR MS images P. We describe X by a real-valued tensor
ofsizewxhxb,Ybyrwxrhxl,andlA’andey
rw x rh x b, respectively, where r is the spatial resolution
ratio between LR MS X and HR PAN Y (in this article,
r = 4) and b is the number of bands. The ultimate goal of
pan-sharpening takes a general form as follows:

P=fXY;0) (2)

where f(-) is a pan-sharpening model that takes X and Y as
input and produces THE desired HR MS P, and ® is THE
collection of parameters for this model. Equation (2) can be
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solved by minimizing the following loss function:

N
(:)f = argmian[f@(Xn, Yn)aPn] (3)

n=1

where N is the number of training samples. As an exam-
ple, (2) can be realized from the perspective of compressed
sensing, and (3) can be solved using dictionary learning
algorithms [45].

From (2), we can see that f(-) can be considered as a
mapping function from (X, Y) to P. Thus, we can reformulate
pan-sharpening as a conditional image generation problem that
can be solved using conditional GAN [46]. Following [42]
and [46], we define a generative network G that maps the
joint distribution pgu, (X, Y) to the target distribution p,(P).
The generator G tries to produce pan-sharpened image P
that cannot be distinguished from the reference image P by
an adversarial trained discriminative network D. This can be
expressed as a min—-max game problem

min max Ex-p,,,,x).p~p, @ [10g Do, (X, P)]
G D
+EX. V)~ punxvylog (1 — Do, (X, Go, (X, Y))].  (4)

With this adversarial learning, a GAN designed for
pan-sharpening tasks could generate faithful HR MS images.

B. Architectures of the Generator

The ultimate goal of a generator is to produce a
pan-sharpened MS image that cannot be distinguished from
a real MS image. Since the inputs for a generator G are an
HR PAN image and an LR MS image, there are multiple
ways to design the G. One possible way is using the network
architecture similar to PNN [9] that stacks the PAN and the
upsampled MS to form a five-band input.> Another way is
directly taking a two-stream design as in [47]. In this work,
we devise and evaluate several generator architectures.

1) Two-Stream Generator: In contrast to other image gen-
eration tasks, e.g. single-image super-resolution [31], image
dehazing [48], or face aging [49], that learn one-to-one
mappings, pan-sharpening accepts two images acquired by
different sensors with distinct characteristics over the same
scene. The two modalities, i.e., the PAN image and the
MS image, contain different information. PAN image is
the carrier of geometric detail (spatial) information, while
MS image preserves spectral information. To make the best use
of spatial information and spectral information, we utilize two
subnetworks to extract the hierarchical features of the input
PAN and MS to capture complementary information of them.
After that, the subsequent network proceeds as an autoen-
coder: the encoder fuses information extracted from PAN and
MS images, and the decoder reconstructs the HR MS images
from the fused features in the final part.

Considering that the spatial resolution of MS images is
only 1/4 of the desired pan-sharpened MS images, the pan-
sharpening can be viewed as a special case of image
super-resolution aided by the PAN image. To enhance the

2In this article, we only consider four-band MS images.
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spatial resolution of MS images using neural networks, there
are usually two solutions. The first one is upscaling MS
images to the desired size using some interpolation methods,
such as bicubic, and then applying neural networks to learn
nonlinear mapping. The second one is applying the model
directly without any preprocessing and performing upscaling
using networks. This will lead to deeper network structure and
potentially better performance, however, with lower computa-
tional cost than the previous one [50]. In this article, we take
into consideration both of the two solutions.

PSGAN: In our previous work [44], we employ the first
solution to build the PSGAN, which is upsampling the
MS image first and then feeding it and the corresponding PAN
into two subnetworks for feature extraction. The architecture
of the generator is shown in Fig. 3. The two subnetworks have
a similar structure but different weights. Each of them consists
of two successive convolutional layers followed by a leaky
rectified linear unit (LeakyReLU) [51] and a downsampling
layer. The convolutional layer with a stride of 2 instead
of a simple pooling strategy, e.g., max pooling, is used to
downsample the feature maps. After passing through the two
subnetworks, the feature maps are first concatenated and then
fused by subsequent convolutional layers. Finally, a decoder-
like network architecture comprised of two transposed con-
volutional and three-flat convolutional layers is applied to
reconstruct the desired HR MS images. Inspired by the
U-Net [52], we adapt the PSGAN network by adding skip
connections. The skip connection will not only compensate
details to higher layers but also ease the training. In the last
layer, ReL.U is used to guarantee the output is not negative.

FU-PSGAN: We take PSGAN as the base network and
build variations on top of it. To differentiate different versions
of PSGAN, we name the PSGAN with the second solution
FU-PSGAN because the generator of it uses the Feature
Up-scaling strategy. The generator of FU-PSGAN has almost
identical architecture to PSGAN except that the MS subnet-
work takes the original-sized MS as input and has one up
convolution following the first convolution layer instead of a
normal convolution layer, as shown in Fig. 4(a).

2) PAN and MS Stacked Generator: Another possible way
of designing generators is viewing the PAN and MS as a
whole, i.e. stacking the two images along the channel dimen-
sion together to form a new image. To do this, the MS image
should be upsampled to match the size of the PAN image and
then concatenated with the PAN to obtain an inflated image.
One appealing advantage of this strategy is we can easily
inherit some well-developed models from related research
fields, such as single-image super-resolution. For example,
the pioneering PNN [9] borrows the main structure of the
network from SRCNN [28].

ST-PSGAN: Following PNN [9], we design a deeper residual
network to accomplish pan-sharpening. We call it ST-PSGAN
since it has a STacked generator. The generator of ST-PSGAN
is shown in Fig. 4(b). It has almost the same structure as
the generator of PSGAN in Fig. 3 except for one major
difference that one stream, along with the skip connection
bound on it, is removed to be consistent with the stacked
PAN and MS. Another imperceptible change is that the first
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Fig. 4. Two variant generators for PSGANs. (a) Generator performing
upscaling using networks. (b) Stacked generator that accepts one concatenated
PAN and Upsampled MS (U-MS) image as input. Note: (a) and (b) share the
same legend as Fig. 3.

convolution layer should adapt to the channel dimension of the
new input. For fair comparisons, all three PSGANSs share the
same discriminator, which will be described in the following.

C. Fully Convolutional Discriminator

In addition to the generator, a conditional discriminator
network is trained simultaneously to discriminate the reference

10231

Grond Truth

Detailed architectures of the generator network G and the discriminator network D.

MS images from the generated pan-sharpened images. Similar
to [46], we use a fully convolutional discriminator that consists
of five layers with kernels of 3 x 3. The stride of the first three
layers is set to 2, and 1 for the last two layers. Except for
the last layer, all the convolution layers are activated through
LeakyReLU. Sigmoid is used to predict the probability of
being real HR MS or pan-sharpened MS for each input. The
architecture of the discriminator is shown in Fig. 3.

We give the detailed parameters of the proposed PSGANs
in Figs. 3 and 4. Taking into account the tradeoff between
the model complexity and the performance, we do not build
much deeper networks although the depths of them can be
deepened easily by inserting more convolution blocks. Also,
larger kernels, such as 5 x 5 or 7 x 7, are not considered in
this work because they bring much more parameters with the
same network depth.

D. Loss Function

We train the three models using the same loss function.
In this section, we will take PSGAN as an example to describe
the loss function. The generative network G and the dis-
criminator network D are trained alternately. To optimize G,
we adopt the pixelwise loss and adversarial loss similar to
some other state-of-the-art GAN networks [46]. In contrast
to many previous works [9], [10] employing ¢, loss that
calculates mean squared errors between the ground truth and
the reconstructed images, in this work, we adopt £; loss that
calculates the absolute difference between the pan-sharpened
image and the ground truth

N
L(G) = [—alog Do, (X, Ge,(X,Y))

n=I

+BIP = Go, X, V)] (5)
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TABLE I

BRIEF INFORMATION ABOUT THE THREE DATA SETS
USED IN EXPERIMENTS. NOTE THAT SPA. RES.
MEANS SPATIAL RESOLUTION

Dataset  Images (Train/Test)  Training Samples Spa. Res. (PAN/MS)
QB 9 (8/1) 25,038 0.6/2.4
GF-2 9 (8/1) 13,460 0.8/3.2
WV-2 9 (8/1) 11,552 0.5/2.0

Finally, the loss function for D takes the form

N
L(D) =) [l —log De, (X, Gy, (X, Y)) + log Do, (X, P)]

n=1
(6)

where N is the number of training samples in a minibatch, and
o and f are the hyperparameters and are set to 1 and 100 in
the experiments, respectively.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the effectiveness and superiority of the proposed PSGANSs.

A. Data Set and Implementation Details

We train and test our networks on three data sets comprised
of images acquired by QuickBird (QB), GaoFen-2 (GF-2), and
WorldView-2 (WV-2) satellite images. Since the desired HR
MS images are not available, we follow Wald’s protocol [53]
to downsample both the MS and PAN images with a factor
of r (r =4 in this article). Then, the original MS images are
used as reference images to be compared with. We randomly
crop patch pairs from the downsampled MS and PAN to form
training samples. It should be noted that we use larger patch
size, 64 x 64 x 4 for MS patches and 256 x 256 x 1 for PAN
patches, than our previous work [44], in which the sizes for
MS and PAN patches are 32 x 32 x 4 and 128 x 128 x 1,
respectively. This will lead to a smaller batch size during
training; however, our experiments, which will be given in the
next subsection, demonstrate that larger patch size produces
better image quality. Brief information about the three data sets
is illustrated in Table I. All the results reported in the following
sections are based on the test sets which are independent of
the training images.

The PSGANSs are implemented in PyTorch [54] and trained
on a single NVIDIA Titan 2080Ti GPU. We use Adam
optimizer [55] with an initial learning rate of 0.0002 and a
momentum of 0.5 to minimize the loss function. The minibatch
size is set to 8. It takes about 8 h to train one model. The
source codes and more experimental results are available at
https://github.com/zhysora/PSGan-Family.

B. Evaluation Indexes

We use five widely used metrics to evaluate the performance
of the proposed and other methods on the four data sets,
including SAM [56], CC, sCC [57], ERGAS [53], and Q4 [58].

1)

2)
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SAM: The spectral angle mapper (SAM) [56] measures
spectral distortions of pan-sharpened images compar-
ing with the reference images. It is defined as angles
between the spectral vectors of pan-sharpened and ref-
erence images in the same pixel, which can be calculated
as

SAM(x1, X) £ arccos( XX ) @)

[BSHIERPON|

where x; and x; are two spectral vectors. SAM is aver-
aged over all the images to generate a global measure-
ment of spectral distortion. For the ideal pan-sharpened
images, SAM should be 0.

CC: The correlation coefficient (CC) is another widely
used indicator measuring the spectral quality of
pan-sharpened images. It calculates the CC between a
pan-sharpened image X and the corresponding reference
image Y as

CC

3)

4)

N S S (Xij—px) (Yij—y)

\/EL S (X —ux) S S (Vi —y)
(8)

where w and & are the width and height of the images,
and u, indicates the mean value of an image. CC ranges
from —1 to +1, and the ideal value is +1.

sCC: To evaluate the similarity between the spatial
details of pan-sharpened images and reference images,
a high-pass filter is applied to obtain the high frequencies
of them, and then, the CC between the high frequencies
is calculated. This quantity index is called spatial CC
(sCC) [57]. We use the high Laplacian pass filter given
by

1 -1 -1
F=|-1 8 -1 )
1 -1 1

to get a high frequency. A higher sCC indicates that most
of the spatial information of the PAN image is injected
during the fusion process. sCC is computed between
each band of the pan-sharpened and reference image.
The final sCC is averaged over all the bands of the
MS images.

ERGAS: The erreur relative globale adimensionnelle de
synthése (ERGAS), also known as the relative global
dimensional synthesis error, is a commonly used global
quality index [53]. It is given by

h |1 <X /RMSE(B))\>
ERGAS £ 100—, | — - 10
I\ N ,zzl:( M(B;) ) 1o

where n and [ are the spatial resolution of PAN and
MS images; RMSE(B;) is the root mean square error
between the ith band of the fused and reference image;
M (B;) is the mean value of the original MS band B;.
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TABLE II

PERFORMANCE VARIATIONS WITH RESPECT TO PATCH S1ZES. THE BATCH SI1ZE DECREASES
FROM 64 TO 8 WITH PATCH SIZE INCREASING FROM 16 TO 64

Patch Size SAM | cC 1 sCC 1 ERGAS | Q41
16 1.2514 0.9862 0.9867 1.3703 0.9852
PSGAN 32 1.2270 0.9867 0.9869 1.3594 0.9852
64 1.1740 0.9877 0.9880 1.2602 0.9869
QB 16 1.3338 0.9855 0.9853 1.4167 0.9842
FU-PSGAN 32 1.2883 0.9857 0.9861 1.3943 0.9845
64 1.2411 0.9869 0.9865 1.2907 0.9864
16 13114 0.9874 0.9864 1.3225 0.9865
ST-PSGAN 32 13125 0.9867 0.9869 1.3662 0.9854
64 1.2889 0.9869 0.9868 1.3267 0.9857
16 0.7632 0.9905 0.9927 0.7388 0.9981
PSGAN 32 0.7484 0.9908 0.9929 0.7303 0.9981
64 0.7575 0.9909 0.9929 0.7233 0.9980
GF-2 16 0.7527 0.9908 0.9930 0.7287 0.9981
FU-PSGAN 32 0.7456 0.9909 0.9931 0.7214 0.9982
64 0.7181 0.9915 0.9935 0.7013 0.9982
16 0.8325 0.9894 0.9914 0.7832 0.9978
ST-PSGAN 32 0.7856 0.9903 0.9924 0.7477 0.9980
64 0.7300 0.9913 0.9933 0.7084 0.9981

5) Q4: The quality index Q4 [58] is the four-band extension
of Q index [59]. Qq4 is defined as
Q& 4ozl - Tt | - 1z,
(02 +02)(u2 + u2)
where z; and 2z, are two quaternions, formed
with spectral vectors of MS images, i.e., z = a +ib +
jc+Kkd, u; and p, are the means of z; and z», 0;,-,
denotes the covariance between z; and z,, and 0221 and

o2 are the variances of z; and z5.

Threé2 nonreference metrics, D;, Dg, and QNR, are
employed for full-resolution assessment.

1) D, [60] is a spectral quality indicator derived from

the difference of interband Q values calculated from

the pan-sharpened MS bands and the low-resolution

MS bands. It is defined as

Y

R 2 K K
Di# ¥ & =D >_ D |0, P) = 0(Xi, X,

i=1 j=i

12)

where K is the number of bands for a MS image, and
P; and X; represent the ith band of the pan-sharpened
and the LR MS images, respectively.

2) Dy [60] is a spatial quality metric complementary to D;.
It is calculated as

L1 & 3
Ds=,\|£ D [e(P.Y) - 0Xi, D) (13)
i=1

where Y is a PAN image and Y is its degraded
low-resolution version. Both D; and Dy take values
in [0,1], and the lower the better.

3) ONR: [60] is the abbreviation of Quality with No
Reference. It is a combination of D; and Ds and
measures global quality of fused images without any
reference image. It is given by

QNR £ (1 — D;)(1 — Ds).
The ideal value of QNR is 1.

(14)

C. Impact of Patch Size

In our previous work [44], we use small patch size to
generate training samples, which allows us to set a larger
batch size and, thus, enables more stable training and faster
convergence [61]. However, for image reconstruction tasks,
larger patch size is beneficial for generating high-quality
images. In this article, we test a much larger patch size
than [44]. Although the batch size will decrease accord-
ingly, our experiments demonstrate that larger patches lead to
higher image quality. We conduct experiments on the QB and
GF-2 images to evaluate how much the impact will be by
setting different patch sizes. The results are given in Table II,
from which we can see larger patch size does have a pos-
itive impact on the image quality. For all the three models,
the image quality has a significant improvement when using
the 64 patch size even though the batch is decreased from
32 to 8. Especially, the spectral indicator SAM and the
global quality measurement ERGAS have obvious superiority
with one exception that the SAM for PSGAN has slightly
lower value on GF-2 images. The effect of patch size on
CC, sCC, and Q4 is weak, only with small improvements
and, sometimes, even slightly worse, even though we are
encouraged to use larger patch size since the spectral quality
is very important in the pan-sharpening task. Thus, in the
following experiments, the patch size is set as 64.

D. Impact of Number of Feature Maps and Kernel Size

The kernel size and the number of feature maps are impor-
tant factors when designing neural networks. We test two
designs of our PSGAN to evaluate the impacts of feature maps
and kernel sizes. First, we reduce the number of feature maps
by half, thus leading to fewer parameters. Second, we replace
the typical 3 x 3 convolutional filters with 5 x 5 kernels.
Enlarging kernel size would increase the number of parameters
of the model, dramatically, as shown in Table VII. We name
these two designs PSGAN-f16 and PSGAN-k5 x 5, respec-
tively. Test results are given in Table III. Although PSGAN-
f16 has fewer parameters (about 1/4 of PSGAN) and runs
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TABLE III

IMPACTS OF BN AND SA ON THE FOUR DATA SETS. “+BN” MEANS THAT
PSGAN Is MODIFIED BY ADDING BATCH NORMALIZATION AFTER
EACH CONVOLUTION BLOCK. “4+SA” MEANS
THAT PSGAN Is EQUIPPED WITH SA

SAM| CCt sCCT  ERGAS) Qut
PSGAN 1.1740  0.9877 0.9880 1.2602  0.9869
PSGAN-f16 15760 09832 09818  1.4414 0.9832
QB PSGAN-K5 x 5 12843 09845 009863 14316 0.9826
PSGAN+BN 92521 09274 09075 14.029 0.8167
PSGAN+SA 21396 09696 09738 23140  0.9629
PSGAN 07575  0.9909 09929 07233  0.9980
PSGAN-f16 0.8411 09889 09908 07994  0.9976
GF2  PSGAN-k5 x 5 07293 09914 09932 07025  0.9981
PSGAN+BN 15903  0.9669 09698  7.6059  0.9260
PSGAN+SA 12182 09739 09793 12422  0.9944
PSGAN 09127 09973 09975 1.6452  0.9971
PSGAN-f16 0.9955 0.9968 09970 1.7718  0.9966
WV-2  PSGAN-k5 x 5  1.0061 09972 09971  1.7002  0.9968
PSGAN+BN 8.1520 0.8697 0.8448 9.6634  0.8016
PSGAN+SA 14185 09950 09943 22273  0.9944

faster than other PSGAN:S, its performance is not satisfactory.
It obtains better results than PSGAN+BN and PSGAN+SA
but weaker than PSGAN and PSGAN-k5 x 5. PSGAN-k5 x 5
is with more than 2x parameters than PSGAN and about
10x parameters than PSGAN-f16. Such huge parameters make
networks hard to train. From Table III, we can see that
PSGAN-k5 x 5 works well even better than PSGAN on the
GF-2 images and, however, obtains worse results on the QB
and WV-2 data sets.

E. Batch Normalization is Harmful

Batch normalization (BN) [62] has been widely used in
neural networks to stabilize and accelerate training. It also
has been applied to the pan-sharpening task for improving
performance [63], [64]. However, recent studies have sug-
gested that BN may be unnecessary in low-level visions [65].
It brings two burdens. First, BN operation requires an amount
of storage and computational resources, which could be used
to add more convolutional layers. Second, BN layers get rid of
scale information, which is helpful for recognition tasks and,
however, is harmful to scale-sensitive tasks, such as image
super-resolution and pan-sharpening. We add a BN layer into
each block for comparison. The results are given in Table III.
We can observe that adding BN layers severely decreases the
performance, especially on the QB and WV-2 images. Thus,
in this work, we remove all the BN layers from our models.

FE. Self-Attention is Not Useful

Attention mechanism plays an important role in human
perception. It allows human brains to selectively concentrate
on information meaningful to perceive tasks while ignoring
other irrelative information. Since it was introduced to deep
learning [73], the attention mechanism has become one of the
most valuable breakthroughs in the community and signifi-
cantly boosts a variety of Al tasks ranging from NLP [74] to
CV [75] domains.

Among many attention models, self-attention (SA) has been
reported to be able to generate high-quality images when
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incorporating GANSs [75]. Thus, in this article, we explore to
leverage the SA module to improve PSGAN. Following [75],
the nonlocal model [76] is adopted to introduce SA to
our PSGAN. To be specific, the SA module is added into the
ninth layer of the generator and the last layer of the discrim-
inator. The experimental results are illustrated in Table III,
from which we can see that, on the QB and WV-2 images,
PSGAN-+SA performs much better than PSGAN+BN and,
however, still worse than the original PSGAN. Although the
CC and sCC on WV-2 images and the Q4 on GF-2 and
WV-2 images are satisfactory to an extent, SA is not welcome
in our models.

G. Two-Stream is Better Than Stacking

We present two variants for our PSGAN, i.e., FU-PSGAN
and ST-PSGAN. PSGAN and FU-PSGAN share a similar
structure that both have two-stream inputs, as described in
Section III-B1. ST-PSGAN has only one input branch that
accepts stacked PAN and upsampled MS as input. Most pre-
vious works adopt a one branch design similar to ST-PSGAN,
such as PNN [9] and PanNet [10], and ignore the two-stream
solution. To achieve a better performance, we evaluate dif-
ferent structures of PSGAN and report quantitative results
in Tables IV-VI with all metrics, including nonreference
ones that are given. It should be noted that all nonreference
measurements are calculated under the full-scale image setting.
From these tables, we can observe that the stacking strategy,
i.e. ST-PSGAN, is the worst among the three PSGANs in
almost all cases except for on the GF-2 images (see Table V)
where it obtains the second best results. Generally speaking,
the two-stream strategy is better than stacking, and the models
built with the two-stream idea are expected to achieve better
performances. FU-PSGAN reaches the top performance on
GF-2 images (see Table V) and obtains satisfactory results
on WV-2 (see Table VI). On the QB set, it is inferior to
PSGAN and, however, still better than ST-PSGAN in terms
of all metrics except for SCC. The three PSGANs generalize
well to full-scale images. Although ST-PSGAN achieves the
best D; and QNR on GF-2 images, it still lags behind the
other two PSGANs on QB and WV-2 images. FU-PSGAN
performs the best on WV-2 and, however, the worst on
GF-2 images. PSGAN is superior to the other variants on QB
with the lowest D; and Dg and the highest QNR.

Although the quantitative measures vary in terms of numer-
ical metrics, the visual perceptions of them are very similar,
as shown in Figs. 5(m)—(o), and 6(m)—(o), and 7(f)—(h).
In Figs. 5(m)—(0) and 6(m)—(0), all of them have faithful colors
and spatial details to the ground-truth images. Fig. 7(f)—(h)
shows the results on full-scale images. Careful inspection of
them indicates that FU-PSGAN is the best among the three on
WV-2 images, which is consistent with the quantitative results
in Table VI.

H. Comparison With Other Pan-Sharpening Methods

In this section, we compare the proposed PSGAN and
its two improved variations, i.e. FU-PSGAN and ST-PSGAN
with 12 widely used pan-sharpening techniques, including ten
traditional methods: SFIM [66], LMVM [67], LMM [67],
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TABLE IV
PERFORMANCE COMPARISONS ON THE TEST SET OF QB. THE TOP-THREE PERFORMANCES ARE HIGHLIGHTED WITH RED, GREEN, AND BLUE

SAM, cct sCCt ERGAS/ Q4t | Dyl Ds | QNRT
SFIM [66]  1.3465 0.9620 0.9752 2.6051 0.9643 0.0062 0.0170 0.9769
LMVM [67] 17131 0.9694 0.9703 23509 0.9647 0.0020 0.0164 0.9816
LMM [67]  1.6845 0.9634 0.9695 2.4306 0.9640 0.0064 0.0173 0.9763
HPF [68]  1.3522 0.9699 0.9811 22534 0.9698 0.0069 0.0178 0.9755
HPFC [65]  1.6558 0.9609 0.9776 42814 0.9453 0.0461 0.0468 0.9093
Brovey [00] 14782 0.9729 0.9720 20542 0.9735 0.0281 0.0503 0.9231
HCS [710] 14782 0.9729 0.9685 25003 0.9632 0.0137 0.0285 0.9582
IHS [11]  1.6100 0.9683 0.9822 22611 0.9697 0.0078 0.0550 0.9376
GS[71] 1.3063 0.9726 0.9821 2.1309 0.9704 0.0232 0.0497 0.9283
BDSD [33] 14725 0.9725 0.9864 22722 0.9707 0.0147 0.0227 0.9629
PanNet [10]  1.1068 0.9848 0.9877 1.3800 0.9834 0.0019 0.0111 0.9871
RED-cGAN [72] 12541 0.9868 0.9867 1.2932 0.9862 0.0069 0.0183 0.9749
PSGAN  1.1740 0.9877 0.9880 1.2602 0.9869 0.0067 0.0116 0.9818
FU-PSGAN  1.2411 0.9869 0.9865 1.2907 0.9864 0.0104 0.0149 0.9749
ST-PSGAN  1.2889 0.9869 0.9868 1.3267 0.9857 0.0138 0.0162 0.9702

TABLE V

PERFORMANCE COMPARISONS ON THE TEST SET OF GF-2. THE TOP-THREE PERFORMANCES ARE HIGHLIGHTED WITH RED, GREEN, AND BLUE

SAM.| cct sCCt ERGAS. Q41 | Dyl Dg | QNR?
SFIM [66]  1.5584 0.8721 0.9512 2.8705 0.8786 0.0123 0.0446 0.9437
LMVM [67] 20111 0.9073 0.9365 2.3138 0.9037 0.0022 0.0304 0.9675
LMM [67] 1.5527 0.8406 0.9450 3.0812 0.8387 0.0151 0.0508 0.9349
HPF [68]  1.5642 0.8776 0.9645 27818 0.8779 0.0118 0.0425 0.9462
HPFC [68]  1.7647 0.8852 0.9600 3.9200 0.8764 0.0840 0.0899 0.8337
Brovey [69]  1.3407 0.7990 0.9049 3.2624 0.8056 0.0454 0.1693 0.7930
HCS [70] 13407 0.8376 0.9392 3.2678 0.8296 0.0200 0.0615 0.9197
IHS [11] 1.8277 0.8109 0.9236 3.3495 0.8168 0.0530 0.1617 0.7938
GS [71] 2.2288 0.7898 0.8947 3.4247 0.7861 0.0819 0.1736 0.7587
BDSD [33] 1.8392 0.8791 0.9512 2.8705 0.8786 0.0066 0.0523 0.9415
PNN O] 1.1899 0.9749 09821 T2172 0.9946 00111 0.0494 0.9400
PanNet [10]  0.9370 0.9864 0.9889 0.8902 0.9971 0.0051 0.0128 0.9822
RED-cGAN [72]  0.7442 0.9909 0.9931 0.7223 0.9981 0.0005 0.0088 0.9908
PSGAN  0.7575 0.9909 0.9929 0.7233 0.9980 0.0019 0.0060 0.9921
FU-PSGAN  0.7181 0.9915 0.9935 0.7013 0.9982 0.0020 0.0089 0.9892
ST-PSGAN  0.7300 0.9913 0.9933 0.7084 0.9981 0.0008 0.0070 0.9922
TABLE VI

PERFORMANCE COMPARISONS ON THE TEST SET OF WV-2. THE TOP-THREE PERFORMANCES ARE HIGHLIGHTED WITH RED, GREEN, AND BLUE

SAM] cct sCCt ERGAS/ Q4t | Dyl Ds | QNR?
SFIM [66] 13411 0.9869 0.9892 35874 0.9873 0.0016 0.0048 0.9936
LMVM [67] 15580 0.9895 0.9874 32472 0.9897 0.0024 0.0053 0.9923
LMM [67]  1.5427 0.9890 0.9879 32039 0.9898 0.0062 0.0081 0.9857
HPF [65] 14367 0.9890 0.9890 32330 0.9889 0.0017 0.0049 0.9934
HPFC [65]  2.6736 0.9352 0.9670 7.8543 0.9186 0.0144 0.0342 0.9520
Brovey [00]  1.4023 0.9896 0.9890 3.1459 0.9891 0.0250 0.0171 0.9583
HCS [70] 14022 0.9895 0.9893 31017 0.9900 00118 0.0127 0.9757
IHS [11]  1.7003 0.9859 0.9895 35379 0.9890 0.0354 0.0245 0.9409
GS[71] 14448 0.9889 0.9878 32192 0.9879 0.0100 0.0166 0.9735
BDSD [33]  1.6422 0.9886 0.9924 33940 0.9905 0.0019 0.0052 0.9929
PanNet [10]  0.9810 0.9966 0.9966 1.8530 0.9964 0.0044 0.0103 0.9854
RED-cGAN [72]  0.8910 0.9973 0.9974 1.6639 0.9970 0.0013 0.0049 0.9938
PSGAN 09127 0.9973 0.9975 1.6452 0.9971 0.0021 0.0045 0.9934
FU-PSGAN  0.8855 0.9974 0.9974 1.6319 0.9971 0.0016 0.0038 0.9947
ST-PSGAN  0.9280 0.9972 0.9973 1.6872 0.9970 0.0018 0.0085 0.9897

HPF [68], HPFC [68], Brovey [69], HCS [70], IHS [11],
GS [71], BDSD [33], and three deep learning-based methods:
PNN [9], PanNet [10], and RED-cGAN [72]. Tables IV-VI
list the quantitative evaluations on the three data sets.
Tables IV and V report the quality indexes of all comparison
methods. It can be seen that deep models achieve surprisingly
good performances and are superior to traditional methods in
most cases. PanNet [10] is a successful method with very
promising results. It obtains the best SAM on QB images and

generalizes well to full-scale images, which is supported by
its optimal nonreference metrics. As a pioneering deep model,
PNN [9] proves the effectiveness of applying deep neural
networks to pan-sharpening tasks. Although PNN has the
lowest spectral quality on the QB data set, it works well on the
GF-2 images with remarkable SAM surpassing all traditional
methods. The proposed PSGAN obtains the best metrics on the
QB images except for the SAM indicator. On the GF-2 data
set, PSGAN and its variants show superior performance to all
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Fig. 5. Visual comparison on QB images. Images are displayed in RGB combination. All images have the same size of 465 x 360 pixels. (a) PAN.
(b) LR MS. (c) SFIM [66]. (d) LMVM [67]. (e) HPF [68]. (f) Brovey [69]. (g) HCS [70]. (h) IHS [I1]. (i) GS [71]. (j) BDSD [33]. (k) PNN [9].
(1) PanNet [10]. (m) PSGAN. (n) FU-PSGAN. (o) ST-PSGAN. (p) GT.
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Fig. 6.  Visual comparison on GF-2 images. Images are displayed in RGB combination. All images have the same size of 465 x 360 pixels. (a) PAN.
(b) LR MS. (c) SFIM [66]. (d) LMVM [67]. (e) HPF [68]. (f) Brovey [69]. (g) HCS [70]. (h) IHS [I1]. (i) GS [71]. (j) BDSD [33]. (k) PNN [9].
(1) PanNet [10]. (m) PSGAN. (n) FU-PSGAN. (o) ST-PSGAN. (p) GT.
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TABLE VII

COMPUTATIONAL COSTS AND THE NUMBER OF PARAMETERS OF DIFFERENT MODELS ON THE TEST SETS. NOTE THAT THE
PAN-SHARPENED IMAGES ARE WITH SIZES OF AROUND 3000 x 2048 x 4, AND WE GIVE AVERAGE TIME ON THEM

Processor Method  GFLOPS Time (s) fParams
SFIM [66 - 3.54 -
LMVM [67 - 22.60 -
LMM [67 - 3.57 -
HPF [68] - 3.66 -
Intel Core i7-7700HQ CPU@2.80GHz HPFC [68] - 3.10 -
Brovey [69 - 0.41 -
HCS [70 - 4.13 -
IHS [11] - 0.39 -
GS [71 - 3.90 -
BDSD [33 - 40.36 -
PNN [9 ~ 84 0.43 ~ 0.080 M
PanNet [10 ~ 80 0.53 ~ 0.077 M
NVIDIA GeForce RTX 2080Ti RED-cGAN [72 ~ 603 1.35 ~ 1.90 M
PSGAN  ~ 402 1.13 ~ 1.88 M
PSGAN-f16  ~ 97 0.62 ~ 047 M
PSGAN-k5x5 ~ 1011 1.52 ~ 474 M
FU-PSGAN  ~ 392 1.07 ~ 1.89 M
ST-PSGAN  ~ 351 0.98 ~ 1.77TM

other methods. Especially, increasing the spatial resolution of
MS images using CNN networks, i.e., FU-PSGAN, gains the
best performance. Stacking the MS and PAN images together
to perform pan-sharpening achieves the second-best place on
the GF-2 data set; however, it falls behind the other two
PSGAN models. Table VI presents the quantitative results of
deep models on WV-2 images. As can be observed, our models
still perform better than PNN [9] and PanNet [10]. Especially,
FU-PSGAN achieves the best results on this data set with the
highest SAM, CC, ERGAS, and Q. and slightly worse sCC
than PSGAN.

L. Visual Comparisons

Figs. 5 and 6 show the sample results that are cropped from
the test site of the Quickbird and GF-2 data sets, respectively.
All images are displayed in true color. In Figs. 5 and 6,
LMVM [67] and PNN [9] tend to blur images with very
poor visual quality [see Figs. 5(d) and (k) and 6(d) and (k)].
SFIM [66], Brovey [69], HCS [70], IHS [11], GS [71], and
BDSD [33] perform spatial information injection efficiently
and produce results with clean high-frequency details almost
identical to the PAN images. However, they suffer from severe
spectral distortions, especially Brovey [see Fig. 5(f)], IHS
[see Fig. 5(h)], and GS [see Fig. 5(i)] methods, the colors
of which are darker than GT and MS images on the QB
test set. Brovey [see Fig. 6(f)], HCS [see Fig. 6(g)], IHS
[see Fig. 6(h)], GS [see Fig. 6(i)], and BDSD [see Fig. 6(j)]
show noticeable color distortions on the GF-2 data set. The
learning-based methods, i.e., PNN, PanNet, and ours, are
optimized to generate images as close as to the GT images;
thus, they have better results when comparing with the GT
images. The proposed PSGANs produce results most similar
to the GTs [see Figs. 5(m)—(o) and 6(m)—(0)]. One notable
drawback of our methods and the other deep models is that
they tend to produce smoother results than traditional ones,
as can be seen from Figs. 5 and 6. This is mainly because
of the pixelwise average problem [31] introduced by the
loss function involving averaging operation, such as L,. This
phenomenon is frequently observed in image enhancement

tasks. One possible solution to this is by using perceptual
losses [77], which will be considered in our future work.

J. Experiments on Full-Resolution Images

We also evaluate our models on full-scale images without
downsampling them. It should be noted that, under this setting,
there will be no target images available for training. Consider-
ing that generalization ability across scales is the main concern
in this experiment, we directly apply the optimized networks
to the original PAN and MS images to produce the desired HR
MS images. For quantitative evaluation, we calculate nonrefer-
ence indexes as described in (12)—(14) for each pan-sharpened
image and report results on the right sides of Tables IV-VI.
As can be seen, the proposed PSGANs generalize well to
the full-scale images. They obtain competitive performance on
the three data sets. Especially, FU-PSGAN achieves the best
results on WV-2 images; some typical samples are represented
in Fig. 7 that clearly shows appealing results of FU-PSGAN.

K. Computational Time

We test the computational time of ours and the other
comparison methods. All traditional methods are implemented
using MATLAB and run on an Intel Core i7-7700HQ CPU,
and deep models are implemented in PyTorch and tested on
a single NVIDIA GeForce RTX 2080Ti GPU. The compu-
tational times are computed on the test sets of the three
data sets. We give average time on the test sets for each
method. Traditional methods are much faster than deep learn-
ing models. THS [13] and Brovey [69] are the fastest ones.
It takes less about 0.5 s for them to produce pan-sharpened
images with sizes of about 3000 x 2048 x 4. SFIM [66],
LMM [67], HPF [68], HPFC [68], and GS [71] have almost
the same time. They spend about 3 ~ 4 s to pan-sharpen
one image. HCS [70] takes a little longer; it takes more
than 4 s to process one image. LMVM [67] and BDSD [33] are
among the most time-consuming pan-sharpening. They spend
22 and 40 s, respectively, for generating one image. Beneficial
from the advance of GPU architectures, deep learning-based
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Fig. 7. Example results on WV-2 images (400 x 400 pixels). Displayed in RGB channels. (a) PAN. (b) LR MS. (c) SFIM [66]. (d) PNN [9]. (e) PanNet [10].
(f) PSGAN. (g) FU-PSGAN. (h) ST-PSGAN.

models are satisfactory. PNN [9] and PanNet [10] take about
0.43 and 0.53 s to process one image. It costs about 1.13,
1.07, and 0.98 s for PSGAN, FU-PSGAN, and ST-PSGAN
to pan-sharpen one image. Our models are slower than PNN
and PanNet because we have deeper architectures than them.
FU-PSGAN performs a bit faster than PSGAN because it
has deconvolution operations so that the input size is smaller.

RED-cGAN [72] takes longer than PSGAN because it has
more parameters.

V. CONCLUSION

In this article, we have proposed PSGANSs for solving the
task of image pan-sharpening and conducted extensive exper-
iments on Quckbird, GaoFen-2, and Worldview-2 images.
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The experiments demonstrate that the PSGANS are effective in
generating high-quality pan-sharpened images with fine spatial
details and high-fidelity spectral information under both low-
and full-scale image settings and are superior to many popular
pan-sharpening approaches. Furthermore, we evaluate several
designs, including two-stream input, stacking input, BN layer,
and attention mechanism, to find the optimal solution for the
pan-sharpening task. We find that the two-stream architecture
is normally better than the stacking strategy, and the BN layer
and the SA module are not welcome in pan-sharpening.
We suggest removing them from networks when designing
pan-sharpening models.

In our future work, we will focus on unsupervised learning
for pan-sharpening. Although remarkable results have been
achieved by PSGANS, their generalization ability to full-scale
images is still underdeveloped. We intend to solve this problem
under an unsupervised learning framework and optimize the
models using only original PAN and MS images without any
preprocessing steps.
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