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ABSTRACT
It is observed that, in most of the CNN-based pansharpening methods, the multispectral (MS) images
are taken as the ground truth, and the downsampled panchromatic (Pan) and MS images are taken
as the training data. However, the trained models from the downsampled images are not suitable
for the pansharpening of the MS images with rich spatial and spectral information at their original
spatial resolution. To tackle this problem, a novel iterative network based on spectral and textural
loss constrained Generative Adversarial Network (GAN) is proposed for pansharpening. First, in-
stead of directly outputting the fused imagery, the GAN focuses on generating the mean difference
image. The input of the GAN is a good initial difference image, which will make the network work
better. Second, the coarse-to-fine fusion framework is designed to generate the fused imagery. It
uses two optimized discriminators to distinguish the generated images, and performs multi-level fu-
sion processing on PAN and MS images to generate the best pansharpening image in full resolution.
Finally, the well-designed loss functions are embedded into both the generator and the discrimina-
tors to accurately preserve the fidelity of the fused imagery. We validated our method by the images
from QuickBird, GaoFen-2 and WorldView-2 satellites. The experimental results demonstrated that
the proposed method obtained a better fusion performance than the state-of-the-art methods in both
visual comparison and quantitative evaluation.

1. Introduction
To date, numerous optical earth observation satellites,

such as QuickBird, GeoEye-1, GaoFen-2 and WorldView-3,
have been launched to simultaneously acquire the panchro-
matic (Pan) and multispectral (MS) imagery. Since the Pan
and MS sensors have to make a fundamental tradeoff be-
tween spatial and spectral resolution, the spatial resolution of
the MS imagery is lower than that of the Pan imagery (Aplin
et al., 1997). However, the MS imagery with the same spa-
tial resolution as that of the Pan imagery, is more desirable
in many applications, such as map updating and urban inves-
tigation. As a consequence, pansharpening (PS) technology
has been developed to spatially enhance the MS imagery by
injecting the high spatial details from the Pan imagery to the
MS imagery.

Existing pansharpening methods can be divided into five
categories: 1) the component substitution (CS) methods; 2)
the multi-resolution analysis (MRA) methods; 3) the varia-
tion optimization (VO) methods; (4) the Generative Adver-
sarial Networks (GAN)-free deep learning methods; (5) the
GAN-based deep learning methods. With the development
of deep learning technology, several network frameworks are
used for pansharpening. From the perspective of network
framework, we divide deep learning-based methods into the
GAN-free and GAN-based pansharpening methods.
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1.1. The CS methods
The CS methods (Laben and Brower, 2000; Yang et al.,

2010; Xu et al., 2014a) project the pixel value of the MS
imagery into a new feature space by a matrix transforma-
tion, then totally or partially substitute the first projected
component of MS imagery by the Pan imagery, and finally
inversely project these components to sharpen the MS im-
agery. Intensity-hue-saturation (IHS), principal component
analysis (PCA), Brovey transform (BT) and Gram-Schmidt
(GS) all belong to this category.

In 2004, a new fast IHS method (FIHS) is proposed (Tu
et al., 2004). In addition to its characteristics of fast calcu-
lation, this method also extends the traditional three-order
transformation to the transformation of any order. But the
FIHS has the same problem as the IHS algorithm, it can
cause spectral distortion. Adaptive IHS (AIHS) (Rahmani
et al., 2010) approximates the error of linear combination of
panchromatic image andmultispectral image to calculate the
fusion ratio of different channels. Improved AIHS (IAIHS)
(Leung et al., 2013) uses the gradient information of themul-
tispectral image to assign different weight coefficients to dif-
ferent channels, so that different details can be injected into
each channel. PCA (Shah et al., 2007) is a statistical method
that can transform multivariate data with related variables
into unrelated variables. The advantage of PCA algorithm
is that it is suitable for multi-band image fusion. The fused
image has high spatial resolution, good detail information
and little influence from noise. However, the disadvantage
is that the spectrum distortion is serious.

The BT (Handayani, 2014) fusion method is to trans-
form the MS image using color standardization transform,
and then product the three bands of the MS image with the
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high resolution Pan image. The advantage of BT is that the
overall structure information is maintained well, but there
will be spectral distortion. GS (Liu, 2020) fusion method
can not only preserve the spatial details of Pan image well,
but also fast. Pansharpening by IHS, PCA, BT and GS tech-
nologies have high fidelity in spatial detail information, and
these methods have the advantages of fast speed and easy
implementation. However, these methods still have limita-
tions. They work well when there is a strong correlation be-
tween high resolution panchromatic images and low reso-
lution multispectral images. However, they were unable to
account for local differences caused by spectral mismatches
between panchromatic and multispectral images. Therefore,
the fusion image will produce obvious spectral distortion.
1.2. The MRA methods

Multi-resolution analysis (MRA) algorithm is to trans-
form the source image to obtain the expression coefficient,
and then reverse transform the expression coefficient to ob-
tain the final image fusion result. Most of the methods
based on MRA use wavelet transform and curvilinear trans-
form. Commonly used models for extracting spatial details
include: wavelet, discrete wavelet, addictive wavelet lumi-
nance proportional (AWLP), Guided Filter, Curvelet, Con-
tourlet and Laplacian Pyramids, etc.

Wavelet transform has good time-frequency local analy-
sis characteristics and can represent the characteristic infor-
mation of image in horizontal, vertical and diagonal direc-
tions. Ranchin T. et al. (Ranchin and Wald, 1993) first pro-
posed an image fusion algorithm based on discrete wavelet
transform in 1993 and achieved good fusion effect. How-
ever, the quality of the fused image is affected by the reg-
istration accuracy because of the different sizes of wavelet
transform images. (Li et al., 2008) compares various multi-
resolution decomposition algorithms, such as Curvelet and
Contourlet, and studies the influence of the number of de-
composition levels and the selection of filters on the fusion
performance. (Wang et al., 2003) proposed a multi-sensor
image fusion algorithm based on discrete wavelet packet
transform. It can fully fuse the information in source im-
age and improve the ability of information analysis and fea-
ture extraction. Burt P.J (Burt, 1984) proposed an image fu-
sion algorithm based on Laplacian pyramid transformation.
Pyramid transform fusion algorithm can represent important
features and details of images at different scales.
1.3. The VO methods

In order to solve the problems of the above two methods,
the theory of variational method is used in remote sensing
image fusion method. The method assumes that the image
is smooth, and puts forward some constraint conditions for
image fidelity as the premise, constructs an energy generic
function about the image processing problem, and obtains
the final image by solving the minimization value of the uni-
versal function.

The earliest variational fusion method was P+XS pro-
posed by C. Ballester in 2006 (Ballester et al., 2006). The

basic idea is to extract the spatial information from Pan im-
age and add it to MS image to improve the spatial resolution
of MS image. M. Möller et al. (Möller et al., 2013) pro-
posed variational wavelet pansharpening algorithm. They
introduced a match item into the wavelet fusion image and
enhanced the texture by combining geometric matches from
the P+XS model. Performing minimization in the wavelet
domain allows different parameters to be used for different
levels of wavelet decomposition. In addition, two function
terms are added to help improve the quality of spatial in-
formation and preserve the relationship between different
bands. Chen et al. (Chen et al., 2014) proposed dynamic
gradient sparse fusion (DGSF) based on local spectral con-
sistency and dynamic gradient sparse fusion. The variational
method can protect spectral information and spatial informa-
tion well.

In addition, there is sitll a challenge for VO methods to
achieve a good balance between spatial and spectral fidelity.
Deng et al. Deng et al. (2018) provided a good pansharpen-
ing method base on Reproducible kernel Hilbert space and
Heaviside function. Then, Tian et al. Tian et al. (2021) pro-
posed an innovative solution using Cartoon-texture Similar-
ities, which can preserve the global and local spatial details
well and obtained high quality pansharpening images. How-
ever, the solving process of energy functional is too compli-
cated and the time complexity of the algorithm is very high,
so it is difficult to have real-time performance.
1.4. The GAN-free deep learning methods

With the development of deep learning technology,
several well-recognized deep learning frameworks have
emerged, such as convolutional neural networks, deep resid-
ual networks, recurrent neural networks, and auto-encoder,
etc. These networks have been introduced into the field of
pansharpening and achieved remarkable results.

The deep learning-based pansharpening methods are
first inspired by super-resolution methods. The MS imagery
pansharpening can be regarded as a special super-resolution
technology, i.e., the super resolution of the MS imagery by
the simultaneously acquired Pan imagery. From this view-
point, (Masi et al., 2017) designed a novel pansharpening
neural network (PNN) by modifying the convolutional neu-
ral network (CNN) based super-resolution method (Dong
et al., 2016) to carry out the pansharpening work. Recently,
the attention mechanism was involved to adjust the spectral
and spatial fidelity (Li et al., 2020; Luo et al., 2020; Zhang
et al., 2021; Lei et al., 2021; Liu et al., 2021). For example,
(Li et al., 2020) designed a channel attention model to adap-
tively correct the characteristics of the channel; To make full
use of the inherent similar information between the MS im-
agery and the Pan imagery, (Lei et al., 2021) proposed a non-
local attention residual network. (Liu et al., 2021) built an
encoding attention module and a fusion attention module to
improve the contour information of the fused images.

In addition, several hybrid strategies have been intro-
duced to pansharpening field. In 2017, (Yang et al., 2017)
proposed a mixed model method called PanNet. They train
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Fig. 1: The flowchart of the proposed method, where Gen is the mean difference image generator, and Dp and Dm are the two fidelity
constraint discriminators. Here, the pseudo Pan image is synthesized by applying ratio transformation to the updated fusion image. The
notation "↓" denotes the average-based decimation downsampling operation, while the notation “↑” denotes the bilinear interpolation
upsampling operation.

Table 1

The frequently used abbreviations
MS MS imagery (The size is 64×64 )
P Pan imagery (The size is 256×256 )
F0 Initial fused image, i.e., MS imagery
Fi ↑ 2 Fused image Fi upsampled by the ratio of 2×2
P ↓ 2N−i Pan imagery downsampled by the ratio of 2N−i × 2N−i

UFi
Updated fused image after the generator (The size is
256 × 256 ↓ 2N−i, which increases as i increases. )

network in high-pass filtering domain to preserve spatial
structure, and for the spectral preservation, they adds up-
sampled MS imagery to network output. Later, (Benzenati
et al., 2020) proposed a two stage pansharpening network,
in which the generalized Laplacian pyramid was included
by CNN to predicts the initial spatial information in the first
stage. (Deng et al., 2020) incorporates the component sub-
stitution and multiresolution analysis fusion schemes into
CNN to estimate the nonlinear information injection mod-
els. (Jiang et al., 2020a) designed a novel mapping CNN that
maps the differential information between the Pan imagery
and the MS imagery to the differential information between
the Pan imagery and the fused imagery. (Fu et al., 2020) in-
troduce a deep detail network architecture with groupedmul-
tiscale dilated convolutions to pansharpen multiband spec-
tral information. Furthermore, a new method (Meng et al.,
2022) introduced popular Transformer architecture to the
field of pansharpening, which aims to build up a long-
distance dependency, to make full use of more useful fea-

tures. These approaches can yield competitive performance.
However, they are also limited by the lack of ideal fused im-
ages, and rely on the down-sampled Pan and MS images as
training samples.
1.5. The GAN-based deep learning methods

GAN (Goodfellow et al., 2014) is a vital machine learn-
ing architecture, in which the generator and the discriminator
compete with each other to gradually obtain a more accu-
rate prediction. In 2020, (Liu et al., 2020) first built a pan-
sharpening GAN (PSGAN) to fuse the Pan and MS image
fusion. The PSGAN has achieved high-fidelity pansharpen-
ing results on the down sampled Pan andMS images. Subse-
quently, (Shao et al., 2020) introduced the residual network
encoder-decoder model into the generator, and constructed
a conditional discriminator network to retain more spatial
information. Recently, (Ozcelik et al., 2021) converted the
pansharpening of theMS imagery into the colorization of the
Pan imagery, and accordingly proposed a pan-colorization
GAN framework (PCGAN). In addition, to improve the fu-
sion performance on the full-resolution scenario, (Ma et al.,
2020) proposed a GAN based pansharpening model that can
be trained by the full-resolution Pan and MS imagery; more
recently, (Gastineau et al., 2021) also designed a pansharp-
ening GANwith full-resolution spectral and spatial discrim-
inators. The two models have obtained a breakthrough in
avoiding the lack of ideal training samples. In 2022, refer-
ence (Zhou et al., 2022) constructed a GAN network with
dual discriminators based on gradient and intensity to pan-
sharpening the images effectively. It can ensure that the gen-
erated image contains the desired geometric structure and
conspicuous information and achieve the best pansharpening
effect. However, these models often still encounter the dis-
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tortion problemwhen processing the imageswith rich spatial
and spectral information.

Because of the fact that the spatial information of the
MS imagery is of great difference from that of the Pan im-
agery, the spatial distortion is also caused by one-step inject-
ing the spatial information into the MS imagery (Dong et al.,
2016). These methods have greatly improved the spatial fi-
delity of fusion performance. However, owing to the lack
of ideal fused images, several methods are trained from the
down-sampled Pan and MS images. Such trained models
often cause spatial distortion when pansharpening the MS
images at their original spatial resolution, especially for the
regions with sharp edges or rich texture. In this paper, we
proposed an unsupervised pansharpening method, named as
UPanGAN, based on the spectral and spatial loss constrained
GAN. The main purposes of this paper are as follows: 1) to
develop an unsupervised pansharpening model that is free
of the ideal training samples; 2) to improve the fusion per-
formance on the full-resolution images with rich spatial and
spectral information. In general, this work has made three
contributions:

1) A new unsupervised pansharpening GAN model di-
rectly trained by original Pan andMS imagery was proposed
to solve the training sample problem. Compared with mod-
els trained on down-sampled images, the proposed model is
more suitable for pan-sharpening the original full-resolution
images with rich spatial and spectral information.

2) A coarse-to-fine scheme with a good initial difference
image was designed to improve the fusion fidelity.Network
will work better if the initial input is better. The coarse-to-
fine scheme can accurately extract themean difference image
than one-step scheme and obtain better fusion images.

3) According to the spatial and spectral preservation re-
quirements, the well-designed loss functions were employed
to fine-tune the UPanGAN training. Experiments demon-
strated that the proposed method can indeed achieve good
fusion performance.

The paper is organized as follows: the next section de-
scribes the proposed methods; in Section 3, we describe the
extensive experiments that were carried out to test and vali-
date the proposed method. Finally, a brief summary is pre-
sented.

2. Methodology
The proposed model, i.e., UPanGAN, is composed by a

mean difference image initialization module and a spectral
and spatial loss constrained GAN module. The GAN mod-
ule includes a mean difference image generator and two loss
constrained discriminators. As shown in Fig. 1, the UPan-
GAN is a coarse-to-fine fusion scheme. Compared with the
one-step fusion schemes, the coarse-to-fine fusion scheme
can more accurately extract the mean difference image be-
tween the Pan imagery and the MS imagery, so that can
make a better spatial and spectral preservation for the full-
resolution images with rich spatial information. In the ex-
periments, we have validated this idea by the comparison
between the coarse-to-fine scheme and the one-step scheme.

Assume that the spatial resolution ratio between the Pan
imagery and the MS imagery is 2N . For the convenience
of discussion, some abbreviations used in the following de-
scription are listed in Table 1. The proposed method first
generates the mean difference image D1 through P ↓ 2N−1
and F0 ↑ 2, and then iteratively generates the mean differ-
ence image Di until i ≥ N . Here, the notation "↓" denotes
the downsampling operation, while the notation “↑” denotes
the upsampling operation. In our method, all downsampling
operation is carried out through the average-based decima-
tion, and the upsampling operation is conducted by the bilin-
ear interpolation. These two methods are common sampling
methods, and they are simple to implement and can achieve
good results (Kim et al., 2009). Notably, as illustrated in Fig.
1, the generator of our method does not directly generate the
fused image Fi, but indirectly obtains the fused imagery by
subtracting Di from P ↓ 2N−1, as follows:

UFi = P − Di = P − f
(

D′; Θ
) (1)

where, D′ represents input data of generator, f (⋅) denotes
the generator network, Θ denotes the trainable parameters
of the network. We will give a detailed description about
the mean difference image initialization and the adversarial
learning approach, including themean difference image gen-
erator and the two loss constrained discriminators.
2.1. Mean difference image initialization

The mean difference image initialization is inspired by
our previous CS pansharpening method (Xu et al., 2014a).
The mean difference image is the difference image between
themean information of PAN image andMS image. The less
difference information, the better the fidelity of the fused im-
age. In fact, the GAN can work much better if reducing the
difference between its initial input and its acceptable out-
put. We observe that there is a great spatial difference be-
tween the ideal fused imagery and the MS imagery, mean-
while there is also a great spectral difference between the
ideal fused imagery and the Pan imagery. However, there
is a small variation between the initial mean difference im-
age and the acceptable mean difference image. Accordingly,
different from the previous GAN-based fusion methods, the
proposed model calculates the mean difference image be-
tween the Pan imagery and the fused imagery, rather than
directly obtains the fused imagery.

To initialize a qualified mean difference image, the data
fitting scheme (Xu et al., 2014a) is employed to smooth the
difference image between Fi−1 ↑ 2 and P ↓ 2N−i. It can be
written as
Di (b) =

[(

P ↓ 2N−i
)

−
(

Fi−1 (b) ↑ 2
)]

∗ G (2)
where Di is the initial mean difference image, and G is a
Gaussian filter, and b is the band sequence value. According
to our earlier work (Xu et al., 2014a), the optimal standard
deviation of the Gaussian filter is set to 2, and its optimal
kernel size is set to 7. They have been verified to be the best
parameters.
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Fig. 2: The detailed structure of the proposed adversarial learning architecture.

2.2. Spectral and spatial loss constrained GAN
The adversarial learning architecture consists of three

modules, i.e., the mean difference image generator, the spa-
tial discriminator and the spectral discriminator. As illus-
trated by Fig. 1, all these modules are implemented based
on CNN. The mean difference image generator iteratively
carries out the fine-tuning of the mean difference image (Di)according to a well-designed loss constraint. The spectral
and spatial discriminators check whether the updated mean
difference image meets the spatial and spectral preservation
constraints.
2.2.1. The mean difference image generator

Network architecture. The network architecture of the
mean difference image generator is given by Fig. 2 (a). The
optimization goal of this generator is to indirectly generate a
fused image that is sufficient to deceive the spatial discrim-
inator and spectral discriminator. The mean difference im-
age generator has 7 convolutional layers. In this generator,
the odd-numbered layers execute the standard convolution
operations, while the even-numbered layers conduct the de-
formable convolution operations. Unlike standard convolu-
tion which can only extract rectangular features (N×N), de-
formable convolution can adaptively capture features of any
shape. Therefore, the addition of deformable convolution
enables the model generator to better generate mean differ-
ence images. Moreover, small convolution kernels are suit-
able to extract the tiny spatial difference between the initial
and acceptable mean difference image. Therefore, for all the
layers, the convolution kernel size is set to 3×3; From the
first layer to the seventh layer, Leaky ReLU is selected as

the activation function. Whereas, for the last layer, Tanh is
taken as the activation function. In addition, to improve the
reuse rate of feature maps, the skip connections developed
by ResNet are adopted by the mean difference image gener-
ator. Consequently, the input of a layer is the sum of both
the input and output of its previous layers.

The ultimate goal of the proposed generator is to ob-
tain an acceptable mean difference image (Di) between the
ideal fused image (Fi) and the downsampled Pan image
(P ↓ 2N−i). In fact, in contrast with the fused image, the
mean difference image is much poorer with spatial details.
We have observed that a low-layer network is capable of fine-
tuning the mean difference image. To make a balance be-
tween the fusion performance and computational cost, the
proposed generator was designed to be a 7-layer network.

Loss function. In the proposed generator, the loss func-
tion (lg) plays a key role in generating high-fidelity fused
image, and directly affects the quality of the fused image. It
consists of the spectral loss function (lgm) and the spatial lossfunction (lgp ). Hence, it is defined as lg = lgp + l

g
m. The lgmrepresents the difference between the updated fused image

(UFi) andMS. Here, UFi is is calculated by
UFki (b) =

[(

P ↓ 2N−i
)

− Dki (b)
] (3)

where k is the sequence of the training samples, b is the band
sequence number, and Dki (b) is the updated mean difference
image. Then, the spectral loss function can be written as
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follows:

lgm=
1
KB

K
∑

k=1

B
∑

b=1

‖

‖

‖

‖

‖

UFki (b) ↓ 2
i −MSk (b)

MSk (b)
×Mk

b

‖

‖

‖

‖

‖

2

F
+�la1 (4)

where K is the total number of training samples, B is the
total band number of MS imagery, Mk

b is the mean value of
MSk (b) , and ‖⋅‖2F stands for the matrix Frobenius norm. �
is a set parameter utilized to adjust the weight of two terms.
la1 is the spectral adversarial loss and used to measures the
spectral information diversity between the updated fusion
image and original MS image, which can be defined as fol-
lows:

la1 =
1
K

K
∑

k=1

(

Dm(UFki ↓ 2
i) − u

)2 (5)

whereDm represents the spectral discriminator and u denotes
the confidence of the spectral discriminator on the fused im-
age generated by the generator. In the design of the spec-
tral loss function, we have considered the relative values of
MSk (b). The reason for such consideration is that, when
the value of MSk (b) is small, a slight change of UFki (b)may cause obviously spectral distortion. The proposed spec-
tral loss function can magnify the slight spectral variation to
avoid spectral distortion.

Due to the lack of ideal fused imagery as reference im-
agery, it is hard to directly measure the spatial loss. To solve
this problem, the downsampled Pan image P ↓ 2N−i is taken
as the spatial reference, and then a pseudo Pan image Piis synthesized to assess the spatial loss. To overcome the
oversaturated distortion problem (Xu et al., 2014b), the ratio
transformation is applied to synthesize the pseudo Pan im-
age by the candidate fused image. First, the image ratio Riis computed by

Rki =
B
∑

b=1
UFki (b)

/ B
∑

b=1

[(

UFki (b) ↓ 2
)

↑ 2
] (6)

where k is the sequence of the training samples, b is the band
sequence value, and UFi is the updated fused image. The
pseudo Pan image is then defined as
P̂ki = Rki ×

(

P ↓ 2N−i
) (7)

In this situation, the spatial loss can be accurately mea-
sured by the difference betweenP ↓ 2N−i and P̂ki . Therefore,the spatial loss function is finally defined as

lgp =
1
4iK

K
∑

k=1

‖

‖

‖

(

P ↓ 2N−i
)

− P̂ki
‖

‖

‖

2

F
+ �la2 (8)

where, � is a set parameter utilized to strike a balance be-
tween the first and second terms. It deserves mention-
ing that lgm and lgp are equally important to fusion perfor-
mance. Therefore, no additional parameter is set to adjust

the weights of lgm and lgp . Similar to the above spectral loss,
we also add the spatial adversarial loss in second term as
follows:

la2 =
1
K

K
∑

k=1

(

Dp(P̂ki ) − v
)2 (9)

whereDp represents the spectral discriminator and v denotes
the confidence of the spatial discriminator on the fused im-
age generated by the generator.
2.2.2. The spatial and spectral discriminators

Network architecture. As illustrated by Fig. 2 (b) and
(c), the network structure of the spatial discriminator is sim-
ilar as that of the spectral discriminator. The identical com-
ponents of the two networks are as follows: 1) the Dp struc-ture have 7 convolution layers, while theDm has 6 layers; 2)
the kernel size of the first few layers is 3×3, while the ker-
nel size of the last layer is 4×4; 3) for all convolution layers,
their number of extracted feature maps are set to [8∕none,
16, 32, 64, 128, 256, 1]; 4) the Leaky ReLU is taken as the
activation function. Due to the fact that the input image size
of the spatial discriminator is 4 times as that of the spectral
discriminator, the step size of the spatial discriminator is dif-
ferent from that of the spectral discriminator. Accordingly,
the step of the spatial discriminator is set to [2-i, 2, 2, 2, 2, 2,
1], whereas the step size of the spectral discriminator is set to
[1, 1, 2, 2, 2, 1]. The two discriminators respectively check
the spatial and spectral fidelity of the updated fused image
according to the following loss functions. Ultimately, the
generator can provide a qualified fused image when passing
the fidelity check.

Loss function. The spatial loss function (ldp ) and the
spectral loss function (ldm) have been designed to respectivelyevaluate the spatial fidelity and the spectral fidelity of the
updated fused image. The evaluation is a probability whose
value ranges from 0 to 1. To assess the spatial fidelity of the
updated fused image, similarly as the generator’s loss func-
tion lgp , a pseudo Pan image is synthesized by ratio transfor-
mation according to the following formulas:

P̂ki =

(

P↓2N−i
)

×
B
∑

b=1
UFki (b)

B
∑

b=1

[(

UFki (b)↓2
)

↑2
]

(10)

Likewise, in the spatial discriminator, the spatial loss
function is also calculated by evaluating the difference be-
tween P̂ki and P ↓ 2N−i. Here, P ↓ 2N−i is regarded as the
spatial target image. Accordingly, the spatial loss function
is defined as follows:

ldp =
1
K

K
∑

k=1

(

[

Dp
(

P̂ki
)

−a
]2
+
[

Dp
(

Pk ↓2N−i
)

−b
]2
)

(11)

where a and b denote the labels of the synthesized Pan image
(P̂ki ) and the target image (Pk ↓ 2N−i), respectively; Dp(P̂ki )
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(a) QuickBird (b) GaoFen-2 (c) WorldView-2

Fig. 3: The examples of the experimental MS images displayed by the combination of Red, Green and Blue bands.

Table 2

The characteristics of the preprocessed experimental datasets.

Satellite name Location Spatial resolution Size of image (pixel) Spectral bands and
their spectral range

Image number (pair)
Train images Test images

QuickBird Beijing MS:2.44m
Pan:0.61m

MS:3072 × 3072
Pan:12288 × 12288

Blue:450-520nm
Green:520-600nm
Red:630-690nm
NIR:760-900nm
Pan:450-900nm

3 3

GaoFen-2 Beijing MS:3.24m
Pan:0.81m

MS:3072 × 3072
Pan:12288× 12288

Blue:450-520nm
Green:520-590nm
Red:630-690nm
NIR:770-890nm
Pan:450-890nm

3 3

WorldView-2 San Francisco MS:1.64m
Pan:0.41m

MS:3072 × 3072
Pan:12288× 12288

Coastal:400-450nm
Blue:450-510nm
Green:510-580nm
Yellow:585-625nm
Red:630-690nm
Red Edge:705-745nm
NIR1:770-895nm
NIR2:860-1040nm
Pan:450-800nm

3 3

and Dp(Pk ↓ 2N−i) stand for the classification results of the
pseudo Pan image and the target image. To distinguish the
fused image as a fake image and the pan image as a real im-
age as much as possible, a is set to 0 and b is set to 1 in
experiments.

In the spectral discriminator, theMS image is selected as
the spectral target image. Likewise, the spectral loss func-
tion is written as follows:

ldm=
1
K

K
∑

k=1

(

[

Dm
(

UFki ↓ 2
i)−c

]2+
[

Dm
(

MSk
)

−d
]2) (12)

where c and d respectively denote the labels of the down-
sampled fused image (UFki ↓2i) and the target image (MSk),

Dm
(

UFki ↓2
i) andDm

(

MSk
) are the classification results of

the downsampled fused image and the target image. Here, c
and d are also set to 0 and 1 respectively in experiments.

3. Experiments and analysis
The proposed method was implemented by TensorFlow

and was trained on a workstation with a NVIDIA GeForce
RTX 3090 GPU and 64GB memory. The RMSProp opti-
mizer was employed and the initial learning rate was set to
0.0002, with decay rate is 0.99. The decay step is set to
10000, and the epoch is set to 100. The size of batch im-
ages is set to 32. It is observed that the trained pansharp-
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Table 3

The evaluation scores of different methods tested by the QuickBird dataset. Bold indicates the best result. It and Tt denote inference time
and training time, respectively.

Method SAM ERGAS Q4 D� Ds QNR Time
It(s) Tt(h)

Ideal value 0 0 1 0 0 1 - -
EXP 0.878±0.105 4.525±0.423 0.638±0.052 0.007 ± 0.001 0.246±0.035 0.749±0.032 - -
PRACS 2.801±0.166 2.946±0.330 0.843±0.034 0.152±0.027 0.168±0.029 0.706±0.025 0.983 -
BDSD-PC 2.347±0.144 2.822±0.316 0.854±0.028 0.146±0.020 0.166±0.032 0.715±0.023 0.117 -
MTF-GLP-HPM-H 1.974±0.157 2.613±0.204 0.878±0.021 0.138±0.023 0.150±0.024 0.729±0.019 1.354 -
LGC 1.660±0.152 2.429±0.258 0.862±0.033 0.140±0.016 0.141±0.024 0.739±0.021 0.098 -
A-PNN 1.397±0.141 2.212±0.216 0.886±0.031 0.137±0.014 0.133±0.022 0.748±0.020 0.125 3.23
SDPNet 1.215±0.122 2.351±0.233 0.878±0.027 0.123±0.009 0.127±0.019 0.766±0.018 0.083 2.50
DIRCNN 1.153±0.125 2.436±0.201 0.870±0.029 0.107±0.011 0.122±0.018 0.784±0.017 0.152 3.68
PSGAN 1.236±0.139 2.281±0.189 0.905±0.025 0.134±0.010 0.094±0.007 0.785±0.015 0.076 1.96
PanGAN 1.192±0.126 1.924±0.177 0.914±0.023 0.115±0.008 0.119±0.015 0.780±0.016 0.092 2.58
UPanGAN 0.864 ± 0.117 1.673 ± 0.183 0.942 ± 0.022 0.102±0.008 0.096 ± 0.009 0.812 ± 0.014 0.107 2.75

ening model is sensitive to the variation of imaging resolu-
tion. Therefore, the training samples were divided into dif-
ferent groups according to their satellite sensors. Moreover,
the proposed method was respectively trained by different
sample groups. The experiments for all methods are com-
pleted based on same training and testing samples. We set
the best parameters of these methods according to the origi-
nal papers. In addition, all deep learning-based methods are
performed on GPU, while other methods are performed on
CPU.
3.1. Datasets and assessment metrics

A variety of large coverage remote sensing images are
necessary to validate the fusion performance of different
pansharpening methods. Therefore, the Pan and MS images
acquired by QuickBird, GaoFen-2 and WorldView-2 satel-
lites were chosen as experimental datasets. TheWorldView-
2 data set includes a total of 8 bands. Except for R-G-B and
NIR bands, other bands provide more information. Experi-
ments on 8 bands ofMS images fully verify the effectiveness
of the method. Most importantly, the images that have rich
texture and colorful land cover were included in our experi-
ments. Fig. 3 (a)-(c) exhibits the examples of the experimen-
tal images. Such images are highly recommended to test the
performance of fusion methods (Zhu and Bamler, 2013).

For the convenience of experimental analysis, the Pan
and MS images were registered in advance; Subsequently,
the Pan andMS images were cut to 12288×12288 pixels and
3072×3072 pixels, respectively. However, for the purpose
of clear visualization, only small subset of the experimental
images are displayed for visual assessment. Table 2 gives
a summary of the experimental images. For each satellite,
3 pairs of Pan and MS images were chosen as training im-
ages, while another 3 pairs of Pan andMS images were taken
as test images. Specifically, in the training processing, the
mean difference images of were divided into 256×256 pixels
patches. Accordingly, the Pan andMS imagery were divided
into 256×256 pixels and 64×64 pixels patches, respectively.

Therefore, the 3 pairs of training images are partitioned into
6912 training samples.

Due to the lack of ideal ground truth images, two dif-
ferent strategies were used to make quantitative assessment.
1) The assessments with reference were employed to assess
the quality of the downsampled fused images. Here, such
assessments included relative dimensionless global error in
synthesis (ERGAS) (Wald, 2000), Spectral Angle Mapper
(SAM) (Yuhas et al., 1992) and Q2n (Wang and Bovik,
2002). For 4-band datasets QuickBird and GaoFen-2, the
Q2n is Q4; and for 8-band datasetWorldView-2, it is Q8. For
all the experiments, the Pan and MS images were fused un-
der the full-resolution state. To make reference-based evalu-
ation, the fused images were downsampled to compare with
original MS images used as reference. In general, the as-
sessments drawn on the downsampled images cannot match
the user’s expectation at full scale (Zhang, 2004). 2) The as-
sessments without reference were used to evaluate the full-
resolution fused images. Three reference-free indicators,
i.e., the spectral distortion index (D�), spatial distortion in-
dex (Ds) and quality with no reference (QNR) (Alparone
et al., 2008), were introduced to assess the full-resolution
fused images. Moreover, human subjective visual observa-
tion was also employed to evaluate the fused images. A good
fusion result can be intuitively recognized its advantages in
color and texture details.

To make experimental comparison, nine state-of-the-
art fusion methods were selected. Since the performance
of classical algorithms does not depend on the correct-
ness of the training phase, four deep learning-free mehtods
such as PRACS (Choi et al., 2010), BDSD-PC (Vivone,
2019), MTF-GLP-HPM-H (Lolli et al., 2017) and LGC
(Fu et al., 2019) were compared with the proposed meth-
ods. Moreover, five deep learning methods, i.e., target-
adaptive CNN-based pansharpening (A-PNN) (Scarpa et al.,
2018), surface- and deep-level constraint-based pansharp-
ening network (SDPNet) (Xu et al., 2020), differential in-
formation residual convolutional neural network (DIRCNN)
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Table 4

The evaluation scores of different methods tested by the GaoFen-2 dataset. Bold indicates the best result. It and Tt denote inference time
and training time, respectively.

Method SAM ERGAS Q4 D� Ds QNR Time
It(s) Tt(h)

Ideal value 0 0 1 0 0 1 - -
EXP 0.890±0.118 4.386±0.383 0.646±0.048 0.004 ± 0.001 0.309±0.034 0.688±0.030 - -
PRACS 2.795±0.174 2.823±0.311 0.845±0.028 0.140±0.026 0.204±0.025 0.685±0.023 1.201 -
BDSD-PC 2.402±0.152 2.773±0.297 0.853±0.031 0.133±0.023 0.184±0.022 0.708±0.022 0.136 -
MTF-GLP-HPM-H 2.244±0.162 2.511±0.241 0.870±0.032 0.120±0.015 0.165±0.023 0.731±0.020 1.437 -
LGC 1.884±0.157 2.410±0.224 0.875±0.028 0.119±0.017 0.160±0.018 0.740±0.020 0.117 -
A-PNN 1.691±0.136 2.373±0.208 0.887±0.025 0.115±0.013 0.153±0.017 0.750±0.020 0.122 3.90
SDPNet 1.232±0.118 2.254±0.189 0.893±0.024 0.107±0.011 0.132±0.013 0.775±0.019 0.095 3.04
DIRCNN 1.146±0.133 2.112±0.161 0.905±0.022 0.085±0.007 0.143±0.014 0.784±0.017 0.147 4.71
PSGAN 1.217±0.142 2.004±0.174 0.924±0.025 0.098±0.010 0.125±0.012 0.789±0.014 0.074 2.35
PanGAN 1.129±0.128 1.725±0.162 0.932±0.019 0.082±0.008 0.090±0.008 0.835±0.015 0.099 3.16
UPanGAN 0.882 ± 0.130 1.610 ± 0.154 0.952 ± 0.014 0.078±0.006 0.075 ± 0.006 0.863 ± 0.012 0.104 3.33

Table 5

The evaluation scores of different methods tested by the WorldView-2 dataset. Bold indicates the best result. It and Tt denote inferencetime and training time, respectively.

Method SAM ERGAS Q8 D� Ds QNR Time
It(s) Tt(h)

Ideal value 0 0 1 0 0 1 - -
EXP 0.940±0.095 4.512±0.362 0.673±0.042 0.005 ± 0.001 0.263±0.029 0.733±0.030 - -
PRACS 3.220±0.162 3.199±0.352 0.846±0.031 0.149±0.029 0.174±0.022 0.670±0.026 1.375 -
BDSD-PC 2.641±0.142 2.988±0.273 0.881±0.026 0.121±0.028 0.161±0.020 0.731±0.027 0.143 -
MTF-GLP-HPM-H 2.577±0.151 2.960±0.278 0.874±0.024 0.120±0.022 0.160±0.023 0.731±0.022 1.897 -
LGC 2.141±0.136 2.776±0.247 0.896±0.026 0.098±0.014 0.117±0.020 0.787±0.023 0.126 -
A-PNN 2.056±0.129 2.733±0.238 0.912±0.028 0.116±0.019 0.152±0.019 0.741±0.022 0.152 5.38
SDPNet 1.177±0.105 2.484±0.255 0.918±0.022 0.092±0.013 0.140±0.015 0.759±0.021 0.127 4.22
DIRCNN 1.239±0.118 2.680±0.196 0.909±0.020 0.096±0.012 0.133±0.010 0.772±0.019 0.233 6.32
PSGAN 1.132±0.113 2.546±0.177 0.916±0.017 0.088±0.015 0.112±0.013 0.794±0.016 0.108 3.30
PanGAN 1.298±0.124 2.172±0.184 0.921±0.017 0.102±0.010 0.080±0.009 0.830±0.018 0.139 4.42
UPanGAN 0.903 ± 0.097 1.865 ± 0.168 0.936 ± 0.015 0.079±0.008 0.072 ± 0.009 0.860 ± 0.016 0.182 4.64

(Jiang et al., 2020b), generative adversarial network for pan-
sharpening (PSGAN) (Liu et al., 2020), and unsupervised
GAN for pansharpening (PanGAN) (Ma et al., 2020), were
also utilized for comparison. These methods were reported
a good fusion performance. Likewise, each compared deep
leaning-based method was also respectively trained by train-
ing samples of different datasets. In addition, the resampled
low resolution MS image by the bilinear interpolation with-
out pansharpening processing is also included in the com-
parisons, referred as EXP.
3.2. Comparison between different methods
3.2.1. Results on QuickBird dataset

Fig. 4 (a)-(x) give a subset of experimental results from
QuickBird dataset. The true color MS images in Fig. 4 (a)
and (m) are taken as the visual reference for evaluating spec-
tral quality. Meanwhile, the full-resolution Pan images are
exhibited in Fig. 4 (b) and (n) to play the role of spatial ref-
erence. In general, all the experimental methods obtained
acceptable fusion performance on QuickBird dataset. How-

ever, from the detail windows, i.e., Fig. 4 (m)-(x), small
spatial and spectral difference can be distinguished. In the
detailed images, the building is blurred in MS image but vis-
ible in PAN image. Among these methods, only PSGAN
and the proposed method can clearly retain this detail, while
that of other methods are weak. However, the PRACS, A-
PNN and PSGAN has some spectral distortion. In general,
deep learning-based methods have relatively better results
than most classic methods. The proposed method obtained a
good balance between spatial and spectral preservation. The
visual evaluation of the proposed method is better than those
of compared methods.

Furthermore, quantitative assessments were also pro-
vided by calculating the quality indicators on the 3 pairs of
QuickBird test images. The results were the averages and the
corresponding variances of the quantities obtained from the
3 pairs of test images. The assessment scores are reported
in Table 3. The numerical values evidence that spectral dis-
tortion (D�) of EXP is almost zero. Because the characteris-
tics of spectral bands are preserved without the pansharpen-
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(a) EXP (b) Pan (c) PRACS (d) BDSD-PC

(e) MTF-GLP-HPM-H (f) LGC (g) A-PNN (h) SDPNet

(i) DIRCNN (j) PSGAN (k) PanGAN (l) Proposed method

(m) EXP (n) Pan (o) PRACS (p) BDSD-PC (q) MTF-GLP-H (r) LGC

(s) A-PNN (t) SDPNet (u) DIRCNN (v) PSGAN (w) PanGAN (x) Proposed method

Fig. 4: The experimental result subsets (512 × 512 pixels) of QuickBird satellite images generated by different methods. The full name
of subfigure (q) is MTF-GLP-HPM-H.

ing processing. Compared with EXP, we can found that all
these methods have a certain degree of spectral distortion,
but incorporates rich spectral feature details. According to
(Wald, 2000), a good fusion quality can be achieved when
the ERGAS score is less than 3. From this point, the as-
sessment scores are consistent with our visual observation.

From Table 3, we can see that the proposed methods have
obtained better scores than the compared methods both in
terms of spectral fidelity and spatial fidelity. Moreover, we
also report the time consumption of different methods in the
last two columns of the table. Among them, the interfer-
ence time-consuming values are derived from the fusion of
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(a) EXP (b) Pan (c) PRACS (d) BDSD-PC

(e) MTF-GLP-HPM-H (f) LGC (g) A-PNN (h) SDPNet

(i) DIRCNN (j) PSGAN (k) PanGAN (l) Proposed method

(m) EXP (n) Pan (o) PRACS (p) BDSD-PC (q) MTF-GLP-H (r) LGC

(s) A-PNN (t) SDPNet (u) DIRCNN (v) PSGAN (w) PanGAN (x) Proposed method

Fig. 5: The experimental result subsets (512×512 pixels) of GaoFen-2 satellite images generated by different methods. The full name of
subfigure (q) is MTF-GLP-HPM-H.

512×512 size PAN image and 128×128 size MS image. The
training time-consuming values are the times they take to
train the resulting models. Although the time consumption
of our method is not the least compared with other methods,
it is acceptable.

3.2.2. Results on GaoFen-2 dataset
To evaluate the fusion algorithms for different sensors,

GaoFen-2 dataset has been involved in the experiments. Fig.
5 (a)-(x) shows a subset of fusion results from GaoFen-2
dataset. The true-color MS images are exhibited in Fig. 5
(a) and (m), respectively. The fusion results obtained from
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(a) EXP (b) Pan (c) PRACS (d) BDSD-PC

(e) MTF-GLP-HPM-H (f) LGC (g) A-PNN (h) SDPNet

(i) DIRCNN (j) PSGAN (k) PanGAN (l) Proposed method

(m) EXP (n) Pan (o) PRACS (p) BDSD-PC (q) MTF-GLP-H (r) LGC

(s) A-PNN (t) SDPNet (u) DIRCNN (v) PSGAN (w) PanGAN (x) Proposed method

Fig. 6: The experimental result subsets (512×512 pixels) of WorldView-2 satellite images generated by different methods. The full name
of subfigure (q) is MTF-GLP-HPM-H.

GaoFen-2 images are slightly better than those from the
QuickBird images. From Fig. 5 (a)-(l), it was observed that
there was no obvious spatial and spectral distortion in the
fused images. Furthermore, from Fig. 5 (m)-(x), we can ob-
viously see that the fused images of SDPNet, PanGAN and
the proposed method are clearer than those of other meth-

ods, and also have good spectral preservation. Compared
the Fig. 5 (t) and (w) with Fig. 5 (x), we also found visual
performance of the proposed method was better than that of
PanGAN and SDPNet.

As shown in Table 4, the results are averages of the quan-
tities obtained from the 3 pairs of GaoFen-2 test images. The
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Table 6

The evaluation scores of different datasets for reduced resolution experiments with assessment strategy 1.

Dataset SAM ERGAS Q4/Q8 D� Ds QNR Time
It(s) Tt(h)

Ideal value 0 0 1 0 0 1 - -
QuickBird 0.871±0.119 1.498±0.169 0.932±0.023 0.109±0.008 0.098±0.005 0.833±0.010 0.105 1.54
GaoFen-2 0.894±0.126 1.681±0.160 0.948±0.024 0.083±0.011 0.081±0.006 0.847±0.011 0.107 1.89
WorldView-2 0.909±0.095 1.774±0.121 0.941±0.031 0.069±0.007 0.074±0.008 0.869±0.013 0.166 2.76

Table 7

The evaluation scores of different datasets for reduced resolution experiments with assessment strategy 2.

Dataset SAM ERGAS Q4/Q8 D� Ds QNR Time
It(s) Tt(h)

Ideal value 0 0 1 0 0 1 - -
QuickBird 0.877±0.123 1.579±0.154 0.925±0.026 0.115±0.010 0.107±0.006 0.819±0.007 0.105 1.54
GaoFen-2 0.892±0.110 1.673±0.155 0.932±0.022 0.078±0.005 0.080±0.009 0.842±0.009 0.107 1.89
WorldView-2 0.912±0.103 1.735±0.143 0.934±0.025 0.078±0.011 0.072±0.008 0.870±0.012 0.166 2.76

quantitative assessments of the fused results from GaoFen-2
images are also slightly better than those from QuickBird
images. The proposed method has obtained better scores
than the compared methods. Particularly, compared with
PRACS, the spatial distortion (Ds) value of the proposed
method has improved more than 45% without losing the
spectral fidelity. Our approach also obtains the better spatial
distortion value (Ds) and spectral distortion value (D�) thanstate-of-the-art deep learning method. At the same time, the
interference and training time-consuming values in the table
show that our method is also competitive, especially for the
deep learning-free methods.
3.2.3. Results on WorldView-2 dataset

Fig. 6 (a)-(x) illustrate the fusion results ofWorldView-2
dataset. The true color MS and Pan images in Fig. 6 (a) and
(b) are taken as the visual reference for subjective evaluation.
The results of PRACS andA-PNNhave relatively large spec-
tral distortion, while the results of PRACS and BDSD have
spatial distortion. Moreover, by comparing Fig. 6 (o)-(r)
with Fig. 6 (s)-(x), we can observe that the spectral perfor-
mance of deep learning methods is better than that of deep
learning-free methods. Not only for the R-G-B true color
band, but other bands also have the same results. It can also
be observed that the fused images of the proposed method
are clearer than those of the compared methods, especially
for spatial texture.

The quantitative assessments, which are the averages of
the scores from 3 pairs of WorldView-2 images, are given
in Table 5. Overall, the proposed method obtained the best
scores. Especially, compared with the deep learning-free
methods, the proposed method greatly reduces the spec-
tral distortion value (Ds) and improves the spatial distortion
value (D�). UPanGAN can also get clearer details than deep
learning-based methods. In addition, in contrast with the re-
sults on GaoFen-2 datasets, the fusion performance obtained
from WorldView-2 dataset slightly decreased. The reason

may be that the MS images of WorldView-2 dataset have 8
bands and the Pan images have more high-resolution spa-
tial details, especially the sharp edges. In this situation, it is
more difficult to achieve good balance between spatial and
spectral preservation. In addition, we can see that the inter-
ference and training time values in the last two columns of
the table is larger than that of QuickBird dataset andGaoFen-
2 dataset. This may be due to the increase in the number of
data bands. But compared with other methods, our approach
can achieve comparable efficiency.
3.2.4. Results on Reduced Resolution images

To answer for the synthesis property of theWald’s proto-
col, we present the supplementary experiment in the reduced
resolution assessment. We use the modulation transfer func-
tion (MTF) tools in reference Vivone et al. (2020) to reduce
the resolution of the original multispectral and panchromatic
images, called MS_LR and PAN_LR. The size of them is
reduced four times, then the PAN_LR has the same size as
the original MS image andMS_LR is one-quarter the size of
the original MS. After that, we trained the UPanGANmodel
based on the reduced resolution dataset. At the same time,
to be consistent with the full-resolution training model, we
do not use the original MS as the ground truth but use the
low-resolution images (PAN_LR and MS_LR) as the train-
ing reference.

In addition, we still use low-resolution images (PAN_LR
and MS_LR) to test the model and the fused image with the
same size as the original MS image is obtained. We use two
different assessment strategies to calculate the performance
metrics of the model. The first is the traditional assessment
method, which calculates the spatial and spectral assessment
index using the original MS as a reference. The second is an
assessment strategy that is set to have the same situation as
the actual functioning of the algorithms. That is, the fused
image is further degraded and is compared with the input
MS_LR to acquire the results of the spectral assessment; the
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Table 8

The evaluation scores of one step scheme and coarse-to-fine scheme tested by three datasets.
Method SAM ERGAS Q4 D� Ds QNR
Ideal value 0 0 1 0 0 1
UPanGAN with one-step scheme 0.892 1.914 0.922 0.091 0.099 0.819
UPanGAN with coarse-to-fine scheme 0.883 1.716 0.942 0.086 0.081 0.840

(a) EXP (b) PAN (c) Fusion image

(d) 25_1 (e) 50_1 (f) 75_1 (g) 100_1

(h) 25_2 (i) 50_2 (j) 75_2 (k) 100_2
Fig. 7: Mean difference images during iteration. The number before the underscore is the epoch number, and the number after underscore
is the stage of iterations.

findings of the spatial assessment are also obtained by com-
paring the fused image with the input PAN_LR. The specific
results can be seen in Table 6 and Table 7. We can find that
the proposed model can still obtain good fusion results for
images under these two reduced resolution assessment meth-
ods.
3.3. Analysis of different scheme settings
3.3.1. Analysis of coarse-to-fine scheme

In our approach, the coarse-to-fine scheme has played
an important role. The main purpose of this scheme is to re-

duce the difference between initial input and output of model
at each iteration, and make the model optimally optimized.
Fig. 7 shows the mean difference images during iteration.
The images (128×128) in first row are the mean difference
images generated in first iteration, and images (256×256) in
second row are generated in second iteration. It is clearly ob-
served that the difference between PAN and fused images be-
comes smaller as the number of iterations increases. There-
fore, we can say that the proposed scheme can optimize the
model from coarse to fine, and finally a good fusion image
can be obtained.
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Table 9

The evaluation scores of different loss function schemes tested by three datasets.
Method SAM ERGAS Q D� Ds QNR
Ideal value 0 0 1 0 0 1
UPanGAN with loss function l0 0.926 1.909 0.887 0.113 0.107 0.792
UPanGAN with loss function l1 0.894 1.775 0.903 0.087 0.099 0.827
UPanGAN with loss function l2 0.905 1.812 0.912 0.100 0.090 0.819
UPanGAN with loss function lg 0.883 1.716 0.942 0.086 0.081 0.840

In contrast with the one-step scheme, it further reduces
the spatial difference between Pan and MS imagery. Conse-
quently, the generator can more accurately obtain the mean
difference image under the constraints of the loss functions.
All else being equal, we replace the coarse-to-fine strategy
of the proposed by the one-step strategy. That is, the origi-
nal MS image is directly upsampled to the size of the PAN
image, and then fed into the model. After training, the fi-
nal fusion model can be obtained. We made experimental
comparison between the two schemes.

Fig. 8 illustrates the fused subsets of the coarse-to-fine
scheme and the one-step scheme, respectively. By compar-
ing the fused images of two schemes, we can observe that the
two schemes have obtained almost the same spectral fidelity;
however, the fused images of the coarse-to-fine scheme are
clearer than those of the one-step scheme. Table 8 lists the
quantitative evaluation of the fused images. In contrast with
the one-step scheme, the coarse-to-fine scheme reduced the
spatial distortion value (Ds) by 21.6%. The experimental re-
sults demonstrated that the coarse-to-fine scheme is an effec-
tive way to improve the spatial performance of deep learning
based fusion methods.
3.3.2. Analysis of the loss functions

The loss functions of the generator can directly affect the
quality of the fused images. In UPanGAN, the generator loss
function (lg) consist of the spectral loss function (lgm) and
the spatial loss function (lgp ), that is lg = lgm + lgp . To obtain
a good fusion performance, the spatial loss function should
have the capability to check blurring spatial details. Mean-
while, the spectral loss function should consider the spectral
preservation in both strong and weak spectral reflection ar-
eas. To verify the effectiveness of the proposed loss func-
tion, two loss functions for comparison, i.e., lg� and lgs , havebeen designed as follows:
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where UFki is the candidate fused image, ∇ denotes the gra-
dient operator. �la1 and �la2 are the spectral and spatial ad-
versarial losses, which are same with that of the proposed

loss function. lgs and lg� are used to computed spatial loss
and spectral loss respectively. These loss functions are usu-
ally used in other GANmethods, such as PanGAN. As a con-
sequence, the spectral loss in UPanGAN is replaced with lg�to prove the good performance. Similarly, lgs can be used to
verify the proposed spatial loss. We then defined three loss
functions for comparison, i.e., l0 = lgs + lg�, l1 = lgs + lgm and
l2 = l

g
p + l

g
�. All else being equal, l0, l1 and l2 were used to

train the proposed model, respectively.
Compared with the above formulas, we can see the opti-

mization details of the proposed loss functions. Because for
the weak spectral reflection areas, such as shadow and water,
the spectral reflectance is small. If the absolute difference
between the fused image and MS image is considered, the
influence of these areas on the loss will be smaller than that
of the strong reflection area. Therefore, these areas are prone
to spectral distortion. Our improvement is to introduce the
relative value of the spectral variation into the loss function.
Meanwhile, the spatial loss function should have the capabil-
ity to find the spatial difference details. Because in the orig-
inal loss function, the single-channel image (∑B

b=1 UF
k
i (b))synthesized from the fusion image has grayscale difference

with the PAN image, it cannot accurately describe the spa-
tial information difference between them. On the contrary,
our approach is to inject texture features of the fusion image
into the original pan to obtain a synthesized single-channel
image (P̂ki ), the gray level of which is the same as the PAN
image. Consequently, the optimized loss function can accu-
rately capture the difference information.

The fused subsets generated by different loss function
schemes are illustrated by Fig. 9. By comparing Fig. 9 (a)
with Fig. 9 (b), we can see that the fused image of the l1scheme is not as clear as that of the lg scheme. This demon-
strates that the proposed spatial loss function is an effective
constraint for spatial fidelity preservation. In Fig. 9 (c), it
can observe that the weak spectral refection areas, such as
shadow areas and vegetation areas, have obvious spectral
distortion. The root cause is that even small change in pixel
valuesmay result in obvious spectral distortion inweak spec-
tral reflection areas. The loss function l2 does not considerthe difference between strong and weak spectral reflection
areas. To better keep spectral fidelity, the proposed spec-
tral loss function adjusts the spectral fidelity according to the
variation ratio. Table 9 gives the quantitative assessment of
the fusion results obtained by different schemes. From this
table, it was observed that the proposed loss function scheme
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(a) Coarse-to-fine scheme

(b) One-step scheme

(c) Coarse-to-fine scheme

(d) One-step scheme
Fig. 8: The experimental comparison between the coarse-to-fine scheme and the one-step scheme.
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(a) The loss function l0 (b) The loss function l1 (c) The loss function l2 (d) The loss function lg
Fig. 9: The experimental comparison between the different loss function schemes.

reduced the spectral distortion value (D�) of the loss func-tionL2 by 14%, and also reduced the spatial distortion value(Ds) of the loss functionL1 by 18%. According to the exper-imental results, we can see that the proposed loss function is
effective to improve both spatial and spectral performance.
3.4. Discussion

In order to obtain good fusion performance, the proposed
method has the limitations as follows: 1) The trained model
of the proposed method is only suitable for fusing the images
with same resolution as training samples. When testing im-
ages with other resolution, the fusion performance of model
will be reduced. 2) The coarse-to-fine scheme of the pro-
posed method requires the training samples with a ratio of 2n
for PAN and MS images. 3) The proposed method performs
n iterations according to the image ratio (2n) of PAN andMS
images. Therefore, it cost more inference time than one-step
method. Henceforth, we will further study the lightweight
model.

4. Conclusion
In this paper, an unsupervised pansharpening method

based on spectral and spatial loss constrained GAN is pro-
posed to pansharpen the full-resolutionMS images with rich
spatial and spectral information. To obtain better spectral
and spatial fidelity, we have employed a coarse-to-fine fu-
sion framework to extract the mean difference image, and
have designed a GAN-based deep learning method to tune
the mean difference image according to the well designed
loss constraints. Finally, the fused images can be gener-
ated by subtracting the mean difference image from the Pan

imagery. Extensive experiments conducted on Quickbird,
GaoFen-2 and Worldview-2 datasets demonstrated that our
method had good fusion performance, and was superior to
many state-of-the-art fusion methods.

In the future, we will improve the mean difference image
generator, so that the trained model can fuse the imagery
from different satellites with similar imaging resolution. In
addition, we will extend the proposed framework to fuse the
Pan and hyperspectral imagery.

Acknowledgement
This work was supported by the National Natural Sci-

ence Foundation of China under Grant 61972021 and Grant
61672076.

References
Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F., Selva, M.,

2008. Multispectral and panchromatic data fusion assessment without
reference. Photogrammetric Engineering & Remote Sensing 74, 193–
200.

Aplin, P., Atkinson, P.M., Curran, P., 1997. Fine spatial resolution satellite
sensors for the next decade. International Journal of Remote Sensing 18,
3873–3881.

Ballester, C., Caselles, V., Igual, L., Verdera, J., Rougé, B., 2006. A varia-
tional model for p+xs image fusion. International Journal of Computer
Vision 69, 43–58.

Benzenati, T., Kallel, A., Kessentini, Y., 2020. Two stages pan-sharpening
details injection approach based on very deep residual networks. IEEE
Transactions on Geoscience and Remote Sensing .

Burt, P.J., 1984. The pyramid as a structure for efficient computation.
Springer Berlin Heidelberg .

Chen, C., Li, Y., Wei, L., Huang, J., 2014. Image fusion with local spectral
consistency and dynamic gradient sparsity, in: 2014 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Page 17 of 19



Choi, J., Yu, K., Kim, Y., 2010. A new adaptive component-substitution-
based satellite image fusion by using partial replacement. IEEE Trans-
actions on Geoscience and Remote Sensing 49, 295–309.

Deng, L.J., Vivone, G., Guo, W., Dalla Mura, M., Chanussot, J., 2018. A
variational pansharpening approach based on reproducible kernel hilbert
space and heaviside function. IEEE Transactions on Image Processing
27, 4330–4344.

Deng, L.J., Vivone, G., Jin, C., Chanussot, J., 2020. Detail injection-based
deep convolutional neural networks for pansharpening. IEEE Transac-
tions on Geoscience and Remote Sensing , 1–16doi:10.1109/TGRS.2020.
3031366.

Dong, C., Loy, C.C., He, K., Tang, X., 2016. Image super-resolution using
deep convolutional networks. IEEE Transactions on Pattern Analysis
andMachine Intelligence 38, 295–307. doi:10.1109/TPAMI.2015.2439281.

Fu, X., Lin, Z., Huang, Y., Ding, X., 2019. A variational pan-sharpening
with local gradient constraints, in: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10265–10274.

Fu, X., Wang, W., Huang, Y., Ding, X., Paisley, J., 2020. Deep multiscale
detail networks for multiband spectral image sharpening. IEEE Trans-
actions on Neural Networks and Learning Systems 32, 2090–2104.

Gastineau, A., Aujol, J.F., Berthoumieu, Y., Germain, C., 2021. Genera-
tive adversarial network for pansharpening with spectral and spatial dis-
criminators. IEEE Transactions on Geoscience and Remote Sensing ,
1–11doi:10.1109/TGRS.2021.3060958.

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial net-
works. arXiv preprint arXiv:1406.2661 .

Handayani, G.D., 2014. Pansharpening citra landsat-8metode broveymodif
pada software er mapper. Universitas Gadjah Mada .

Jiang, M., Shen, H., Li, J., Yuan, Q., Zhang, L., 2020a. A differential infor-
mation residual convolutional neural network for pansharpening. ISPRS
Journal of Photogrammetry and Remote Sensing 163, 257–271.

Jiang, M., Shen, H., Li, J., Yuan, Q., Zhang, L., 2020b. A differential
information residual convolutional neural network for pansharpening.
ISPRS Journal of Photogrammetry and Remote Sensing 163, 257–271.

Kim, H., Park, S., Wang, J., Kim, Y., Jeong, J., 2009. Advanced bilinear
image interpolation based on edge features, in: 2009 First International
Conference on Advances in Multimedia, IEEE. pp. 33–36.

Laben, C.A., Brower, B.V., 2000. Process for enhancing the spatial res-
olution of multispectral imagery using pan-sharpening. US Patent
6,011,875.

Lei, D., Chen, H., Zhang, L., Li, W., 2021. NLRNet: An efficient nonlocal
attention resnet for pansharpening. IEEE Transactions on Geoscience
and Remote Sensing .

Leung, Y., Liu, J., Zhang, J., 2013. An improved adaptive inten-
sity–hue–saturation method for the fusion of remote sensing images.
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 11, 985–
989.

Li, S., Yang, B., Hu, J., 2008. Performance comparison of different multi-
resolution transforms for image fusion., in: Asia-pacific Computer Sys-
tems Architecture Conference.

Li, X., Xu, F., Lyu, X., Tong, Y., Chen, Z., Li, S., Liu, D., 2020. A remote-
sensing image pan-sharpening method based on multi-scale channel at-
tention residual network. IEEE Access 8, 27163–27177. doi:10.1109/
ACCESS.2020.2971502.

Liu, Q., 2020. Sharpening the Pan-Multispectral GF-1 Camera Imagery
Using the Gram-Schmidt Approach: The Different Select Methods for
Low Resolution Pan in Comparison. Advances in Natural Computation,
Fuzzy Systems and Knowledge Discovery.

Liu, Q., Han, L., Tan, R., Fan, H., Li, W., Zhu, H., Du, B., Liu, S., 2021. Hy-
brid attention based residual network for pansharpening. Remote Sens-
ing 13, 1962.

Liu, Q., Zhou, H., Xu, Q., Liu, X., Wang, Y., 2020. PSGAN: A generative
adversarial network for remote sensing image pan-sharpening. IEEE
Transactions on Geoscience and Remote Sensing .

Lolli, S., Alparone, L., Garzelli, A., Vivone, G., 2017. Haze correction
for contrast-based multispectral pansharpening. IEEE Geoscience and
Remote Sensing Letters 14, 2255–2259.

Luo, S., Zhou, S., Qi, Y., 2020. CSAFNet: Channel similarity attention
fusion network for multispectral pansharpening. IEEE Geoscience and
Remote Sensing Letters , 1–5doi:10.1109/LGRS.2020.3040893.

Ma, J., Yu, W., Chen, C., Liang, P., Guo, X., Jiang, J., 2020. Pan-GAN: An
unsupervised pan-sharpening method for remote sensing image fusion.
Information Fusion 62, 110–120.

Masi, G., Cozzolino, D., Verdoliva, L., Scarpa, G., 2017. CNN-based pan-
sharpening of multi-resolution remote-sensing images, in: 2017 Joint
Urban Remote Sensing Event (JURSE), pp. 1–4. doi:10.1109/JURSE.
2017.7924534.

Meng, X., Wang, N., Shao, F., Li, S., 2022. Vision transformer for pan-
sharpening. IEEE Transactions on Geoscience and Remote Sensing 60,
1–11.

Möller, M.,Wittman, T., Bertozzi, A.L., Burger, M., 2013. A variational ap-
proach for sharpening high dimensional images. Siam Journal on Imag-
ing Sciences 5, 150–178.

Ozcelik, F., Alganci, U., Sertel, E., Unal, G., 2021. Rethinking CNN-based
pansharpening: Guided colorization of panchromatic images via gans.
IEEE Transactions on Geoscience and Remote Sensing 59, 3486–3501.
doi:10.1109/TGRS.2020.3010441.

Rahmani, S., Strait, M., Merkurjev, D., Moeller, M., Wittman, T., 2010.
An adaptive ihs pan-sharpening method. IEEE Geoscience and Remote
Sensing Letters 7, 746–750.

Ranchin, T., Wald, L., 1993. The wavelet transform for the analysis of
remotely sensed images. International Journal of Remote Sensing 14,
615–619.

Scarpa, G., Vitale, S., Cozzolino, D., 2018. Target-adaptive cnn-based pan-
sharpening. IEEE Transactions on Geoscience and Remote Sensing 56,
5443–5457.

Shah, V.P., Younan, N.H., King, R.L., 2007. An adaptive pca-based ap-
proach to pan-sharpening. Proceedings of SPIE - The International So-
ciety for Optical Engineering 6748, 674802–674802–9.

Shao, Z., Lu, Z., Ran, M., Fang, L., Zhou, J., Zhang, Y., 2020. Residual en-
coder–decoder conditional generative adversarial network for pansharp-
ening. IEEE Geoscience and Remote Sensing Letters 17, 1573–1577.
doi:10.1109/LGRS.2019.2949745.

Tian, X., Chen, Y., Yang, C., Ma, J., 2021. Variational pansharpening by ex-
ploiting cartoon-texture similarities. IEEE Transactions on Geoscience
and Remote Sensing 60, 1–16.

Tu, T.M., Huang, P.S., Hung, C.L., Chang, C.P., 2004. A fast inten-
sity–hue–saturation fusion technique with spectral adjustment for ikonos
imagery. IEEE Geoscience and Remote Sensing Letters 1, 309–312.

Vivone, G., 2019. Robust band-dependent spatial-detail approaches for
panchromatic sharpening. IEEE transactions on Geoscience and Remote
Sensing 57, 6421–6433.

Vivone, G., Dalla Mura, M., Garzelli, A., Restaino, R., Scarpa, G., Ulfars-
son, M.O., Alparone, L., Chanussot, J., 2020. A new benchmark based
on recent advances in multispectral pansharpening: Revisiting pan-
sharpening with classical and emerging pansharpening methods. IEEE
Geoscience and Remote Sensing Magazine 9, 53–81.

Wald, L., 2000. Quality of high resolution synthesised images: Is there a
simple criterion?, in: Proc. 3rd Conf. Fusion Earth Data: merging point
measurements, raster maps and remotely sensed images, SEE/URISCA.
pp. 99–103.

Wang, H.H., Peng, J.X., Wu, W., 2003. A fusion algorithm of remote sens-
ing image based on discrete wavelet packet, in: Machine Learning and
Cybernetics, 2003 International Conference on.

Wang, Z., Bovik, A.C., 2002. A universal image quality index. IEEE Signal
Processing Letters 9, 81–84.

Xu, H., Ma, J., Shao, Z., Zhang, H., Jiang, J., Guo, X., 2020. Sdpnet: A deep
network for pan-sharpening with enhanced information representation.
IEEE Transactions on Geoscience and Remote Sensing 59, 4120–4134.

Xu, Q., Li, B., Zhang, Y., Ding, L., 2014a. High-fidelity component sub-
stitution pansharpening by the fitting of substitution data. IEEE Trans-
actions on Geoscience and Remote Sensing 52, 7380–7392.

Xu, Q., Zhang, Y., Li, B., 2014b. Recent advances in pansharpening and
key problems in applications. International Journal of Image and Data
Fusion 5, 175–195.

Page 18 of 19

http://dx.doi.org/10.1109/TGRS.2020.3031366
http://dx.doi.org/10.1109/TGRS.2020.3031366
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/TGRS.2021.3060958
http://dx.doi.org/10.1109/ACCESS.2020.2971502
http://dx.doi.org/10.1109/ACCESS.2020.2971502
http://dx.doi.org/10.1109/LGRS.2020.3040893
http://dx.doi.org/10.1109/JURSE.2017.7924534
http://dx.doi.org/10.1109/JURSE.2017.7924534
http://dx.doi.org/10.1109/TGRS.2020.3010441
http://dx.doi.org/10.1109/LGRS.2019.2949745


Yang, J., Fu, X., Hu, Y., Huang, Y., Ding, X., Paisley, J., 2017. Pan-
Net: A deep network architecture for pan-sharpening, in: 2017 IEEE
International Conference on Computer Vision (ICCV), pp. 1753–1761.
doi:10.1109/ICCV.2017.193.

Yang, S., Wang, M., Jiao, L., Wu, R., Wang, Z., 2010. Image fusion based
on a new contourlet packet. Information Fusion 11, 78–84.

Yuhas, R.H., Goetz, A.F., Boardman, J.W., 1992. Discrimination among
semi-arid landscape endmembers using the spectral angle mapper
(SAM) algorithm, in: Proc. Summaries 3rd Annu. JPL Airborne Geosci.
Workshop, pp. 147–149.

Zhang, L., Zhang, J., Ma, J., Jia, X., 2021. SC-PNN: Saliency cascade
convolutional neural network for pansharpening. IEEE Transactions on
Geoscience and Remote Sensing , 1–19doi:10.1109/TGRS.2021.3054641.

Zhang, Y., 2004. Understanding image fusion. Photogramm. Eng. Remote
Sens 70, 657–661.

Zhou, H., Hou, J., Zhang, Y., Ma, J., Ling, H., 2022. Unified gradient-and
intensity-discriminator generative adversarial network for image fusion.
Information Fusion .

Zhu, X.X., Bamler, R., 2013. A sparse image fusion algorithm with appli-
cation to pan-sharpening. IEEE Transactions on Geoscience & Remote
Sensing 51, 2827–2836.

Page 19 of 19

http://dx.doi.org/10.1109/ICCV.2017.193
http://dx.doi.org/10.1109/TGRS.2021.3054641

