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LMO-YOLO: A Ship Detection Model for
Low-Resolution Optical Satellite Imagery

Qizhi Xu

Abstract—TIt has been observed that the existing convolutional
neural network (CNN)-based ship detection models often result in
high false detection rate in low-resolution optical satellite images.
This problem arises from the following factors: 1) the current
8-b rescaling schemes make the images lose some important in-
formation about ships in low-resolution imagery; 2) the effective
features of ships at low resolution are far fewer than those of ships
at high resolution; and 3) the detection of low-resolution ships is
more sensitive to object-background contrast variation. To solve
these problems, a low-resolution marine object (LMQO) detection
YOLO model, called LMO-YOLO, is proposed in this article. First,
amultiple linear rescaling scheme is developed to quantize the orig-
inal satellite images into 8-b images; second, dilated convolutions
are included in a YOLO network to extract object features and
object-background features; finally, an adaptive weighting scheme
is designed to balance the loss between easy-to-detect ships and
hard-to-detect ships. The proposed method was validated by level
1 product images captured by the wide-field-of-view sensor on the
GaoFen-1 satellite. The experimental results demonstrated that our
method accurately detected ships from low-resolution images and
outperformed state-of-the-art methods.

Index Terms—Contrast sensitive loss, dilated convolution, low-
resolution imagery, ships detection.

1. INTRODUCTION

ARINE ship detection technology is of great importance
M to civil and military applications. With the development
of remote sensing technology, the volume of remote sensing
data has tremendously increased. Compared with other remote
sensing image data, optical remote sensing images are rich in
content and easy to understand. Therefore, many studies have
been carried out on optical remote sensing images, especially in
the field of ship detection [1]-[3].

Notably, to obtain more detailed information, the original re-
mote sensing image products obtained from sensor are generally
between 10 and 14 b. By way of illustration, the optical images
provided by WorldView-2 [4], WorldView-3 [5], and Quick-
Bird [6] are 1 1-b data. And data produced by moderate resolution
imaging spectroradiometer instruments is 12 b. According to
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Fig. 1. Columns (a)-(d) show the comparison results of linear, 1% linear,
2% linear, and the trident rescaling (our approach) methods, respectively. The
green boxes in columns (a)—(c) indicate that the target obtained by this rescaling
method is the most salient object produced by the three schemes. The images
in column (d) show that trident recaling achieves the best quantization in each
scene.

the clouds and the Earth’s radiant energy system record (2000
to the present), most GEO imagers have implemented 10-b
quantization [7].

However, in existing convolutional neural network (CNN)-
based ship detection methods, the training samples are generally
8-bimages. Because model training requires hand-labeled target
ground-truth for supervision, the images must be visualized.
Furthermore, the computational processing of the original high
bit-depth data will greatly increase the memory consumption,
which is not supported in practical engineering applications.
Therefore, the publicly available datasets used in popular CNN-
based target detection methods, such as the HRSC2016 [8],
DOTA [9], and DIOR [10] datasets, are all 8-b data.

Generally, the 8-b datasets are obtained by a single quantiza-
tion method. Nevertheless, a single 8-b image cannot clearly
show all the useful information for low-resolution ships. As
shown in Fig. 1, no one single quantization method works well
for all images in different scenes. Some 8-b images rescaled
by only one single quantization method will lose some details,
which is not conducive to the detection of small or weak targets.
Therefore, it is necessary to develop a good quantization method
for deep network model to keep as much information as possible.
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Meanwhile, the effective features of low-resolution marine
object (LMO) are fewer than that of high-resolution marine
object. They are easily weakened in a deep network layer. Most
of the existing methods aim to extract more target features while
ignoring the importance of the background. The tiny object
detection is sensitive to object-background contrast variation.
For these reasons, it is difficult to obtain accurate detection
results. Traditional object detection was dominated by works
that make use of sample features. It includes color range, texture
feature, local binary pattern (LBP), and scale-invariant feature
transform, etc. In [11], structure-LBP feature descriptor is added
to ship detection structure. The LBP feature can be combined
with spatial information to achieve a more discriminative ship
description. In [12], the histograms of oriented gradients and
local binary patterns is extracted from images as effective dis-
criminative features.

Currently, deep learning methods have shown good perfor-
mance in this field and are widely studied [13], [14]. They gen-
erally can be classified to unsupervised learning and supervised
learning. Unsupervised learning is a method of learning from
unlabeled data and finding the patterns or high-level semantics
of the data. Liao et al. [15] also proposed an unsupervised
cluster-guided object detection method to address the dense
detection problem in some scenes. For supervised object detec-
tion methods, CNN has become an good choice for many fields
of image processing. For an instance, Sharifzadeh et al. [16]
proposed an hybrid algorithm of CNN and multilayer percep-
tron for ship detection. It can effectively extract the images
internal features and obtain good detection results. Moreover,
the performance of the popular YOLO models [17]-[20] is
even more surprising. They have the powerful ability to learn
regions of interest and context at the same time. In particular,
YOLOvV4 [20] has become an efficient and accurate model with
a high mean average precision. Although it is not specifically
designed for small target detection, it can still be used as an
excellent benchmark method [21].

Based on the above analysis, a novel LMO-YOLO network
for low-resolution optical satellite imagery is proposed in this
article. The main objectives of this study are as follows:

1) To develop a rescaling method that can retain more de-

tailed information.

2) To improve the performance of LMO detection by consid-

ering more object-background features.

Only by extracting more object-background information can
the network more easily distinguish the positive and negative
samples, such as ship and ship-shaped scattered clouds. Overall,
this study makes three contributions: first, a multiple linear
rescaling scheme is designed to effectively alleviate the infor-
mation loss problem of a single quantization method. Second,
to capture more object-background information, a multiscale
dilated convolution (MDC) module is constructed on the back-
bone of YOLOv4. Finally, because hard detection samples have a
greater impact on model performance, a contrast-sensitive loss is
employed to balance the weight between hard and easy samples.

The rest of this article is organized as follows. Section II in-
vestigates the related works and Section III describes the details
of the proposed ship detection method. Experimental results
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and detailed comparisons are shown in Section IV to verify the
superiority of our method. Finally, Section V concludes this
article.

II. RELATED WORKS
A. Eight-Bit Rescaling Schemes

In the past years, a multitude of rescaling algorithms for
remote sensing images have been put forward by researchers.
Many software have one-click rescaling tools. Taking ENVI
software as an example, there are several simple image scaling
approaches that can be used, including linear [22], linear 2%
[23], Gaussian [24], and square root stretching [25]. Most of
these methods require few steps and are easy to complete.
However, it needs to be set manually, which is not suitable
for automatic operation. The results of different quantization
methods also vary widely. Additionally, The quantization effect
of different scenes is greatly affected by its background. For
complex background images, it is difficult for a single quanti-
zation method to achieve acceptable results for all scene image
blocks. As shown in Fig. 1, a single linear quantization method
usually cannot obtain a satisfactory result in practice.

Currently, many studies focus on quantizing images and
improving image contrast. In [26], a general framework based
on histogram equalization for image contrast enhancement is
presented. Conventional histogram equalization is optimized
by introducing specifically designed penalty terms. In [27], a
subband decomposition multiscale retinal method containing
a hybrid intensity transfer function is introduced to enhance
optical remote sensing images. In 2012, Celik et al. [28] pro-
posed a 2-D histogram-based method. Contextual information is
utilized to enhance the contrast in the input image. In addition, a
guided image contrast enhancement method is proposed in [29].
This method improved the context-sensitive and context-free
contrast by solving a multicriteria optimization problem and ef-
ficiently created visually pleasing enhanced images. To meet the
requirements of automation and efficiency in applications, Liu
et al. [30] presented a novel self-adaptive histogram compacting
transform-based contrast enhancement method for remote sens-
ing images. All these methods can improve the image quality
of not only remote sensing images but also natural images.
However, they mainly address 8-b images and cannot avoid
losing some detail information of the original 16-b image.

Based on the above analysis, a good quantization method is
necessary. Because a single quantization method cannot perform
well for all targets, a trident linear rescaling scheme is proposed
in this article. Here, “trident” denotes that three rescaling ap-
proaches are simultaneously utilized to quantize the original im-
age data and superimpose their results as three-channel training
images. In this study, linear, linear 1%, and linear 2% stretching
methods are selected. Fig. 1 gives the example results, and the
green boxes show that the corresponding method has a better
enhancement effect on that ship. Although the linear stretching
methods are commonly used, it is worth considering that how to
better apply them to rescale images with different background.
The trident rescaling method is simple, yet very effective. It not
only improves the contrast of the image but also maximizes the
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retention of information. Moreover, this quantization scheme
has good adaptability to various scenes.

B. CNN-Based Ship Detection Methods

In recent years, encouraged by the great success of deep
learning methods, many CNN-based studies have been proposed
to detect marine ship [31]-[33]. They can automatically extract
complex features from different levels in raw images and achieve
superior detection performance. The detection performance of
these methods has surpassed that of feature engineering meth-
ods [34]. This work also explores CNNs to study LMO detection.
Thus far, popular remote sensing image target detectors have
generally been developed for high-resolution images (large tar-
gets) and low-resolution images (small targets), respectively.

For most existing detection methods for high-resolution re-
mote sensing images, the accurate localization of detected
objects is an issue of concern. Based on this point of view,
Long et al. [35] proposed a new method for solving the prob-
lem of automatic accurate localization of detected objects. An
unsupervised score-based bounding box regression algorithm,
combined with a nonmaximum suppression algorithm, was de-
veloped to optimize the bounding boxes of regions. In [36],
a unified and effective method for simultaneously detecting
objects was proposed. It achieved more accurate detection by
adding a redesigned inception module and an accurate object
detection module. Because the existing complex object detectors
are not satisfactory [37], a unified part-based CNN is specifically
designed. In [38], a sparse anchoring guided high-resolution
capsule network (SAHR-CapsNet) was designed for geospa-
tial object detection based on high-resolution remote sensing
images. These methods have good positioning and detection
performance for large objects at high resolution.

Moreover, many researchers have also been working toward
high-resolution target detection using different approaches. Shi
et al. [39] detected ships in high-resolution optical imagery in
a “coarse-to-fine” manner. They transformed the panchromatic
image to a “fake” hyperspectral form to amplify the separability
between ships and background. After that, SVDNet [40] was
proposed to solve the problems of background interference and
high computational expenses. The experimental results demon-
strate the superiority of SVDNet. Furthermore, a new paradigm
formulated [41] from a Bayesian perspective was designed to
detect targets in high-resolution aerial remote sensing images,
and it outperformed many state-of-the-art methods. Different
from other approaches that usually work well only at one scale,
HSF-Net [42] was proposed to efficiently detect ships at various
scales. This was achieved by using an added hierarchical se-
lective filtering layer. These methods can obtain good detection
results for high-resolution remote sensing image. However, the
performance of these methods for small object detection in
low-resolution images needs to be further improved.

Other researchers have also done work in low-resolution small
object detection. On the one hand, small object detection often
faces the problem of insufficient feature information in the deep
layers of CNNs. To tackle the challenges brought by low reso-
lution and noisy representation, a single perceptual generative
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adversarial network is developed in this article [43]. In 2020,
a novel network called image pyramid guidance network (IPG-
Net) [44] is proposed to ensure both the extracted spatial and
semantic information are abundant. Thus, the typical problem
in CNNs of information imbalance can be solved. In [45], a
rotatable region-based residual network (R3-Net) is proposed.
It can detect small and dense objects by generating rotatable
rectangular target boxes in a half coordinate system. In [46],
Deng et al. proposed an extended feature pyramid network
(EFPN) to reduce the damage done by feature coupling at various
scales to the detection performance of small objects. These
approaches have played a certain role in promoting the research
of small target detection.

On the other hand, small object detection is also affected by
the problem of sample imbalance. The existing sample balancing
methods focus on two aspects: 1) the imbalance of positive
and negative samples; and 2) the imbalance of hard and easy
samples. To overcome these problems, OHEM [47] ranks all
negative samples according to their loss values. The negative
samples with the largest loss value are selected for targeted
training to improve the detection accuracy. In [48], the author
proposed a RetinaNet with focal loss to reduce the weight of
many simple negative samples in training. In [49], a gradient
harmonizing mechanism was proposed to solve the problem
of outlier points in the sample and make the training of the
model more reasonable. Libra R-CNN [50] achieved a further
breakthrough in public datasets with a novel sampling method
that proposed a more balanced loss function. In general, these
approaches can yield competitive performance. However, they
are also limited by the object-background contrast variation.
Although some of these methods perform well on natural im-
ages, the LMO detection results on remote sensing images with
complex backgrounds are not good enough.

III. METHODOLOGY

The proposed method, LMO-YOLO, is composed of a trident
rescaling module and an object detection module. The overall
framework is shown in Fig. 2. The trident rescaling module is
applied to obtain the training samples. Three different quan-
tization methods are utilized to rescale the raw satellite data.
Next, the obtained three 8-b images are superimposed as an RGB
three-channel image to retain all useful information. Then, the
training samples after preprocessing are fed into an optimized
YOLO network. In particular, the MDC layer added in the back-
bone network can extract more object and object-background
features under different receptive fields, so the weak targets
can be accurately detected by adding auxiliary information.
Additionally, a contrast-sensitive loss is designed to reweight
the hard samples for detection. The lower the contrast between
an target anchor and its surrounding area, the harder it is to be
detected. A more detailed description is given in the following
subsections.

A. Trident Rescaling Approach

To gain effective training samples, the original 10 to 14-b
remote sensing images were quantized to 8 b and then cut
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into slices. A single rescaling method may cause information
loss for some small and weak ships. As shown in Fig. 1(a)—(c),
each linear quantization method has its own strengths and weak-
nesses. Specifically, compared with other quantization methods,
linear quantization (that is, quantization of all gray values to [0,
255]) can preserve relatively more information. It will produce
images with uniform gray values, but the ship contour is blurred.
Percentage linear quantization contributes to improving target
and background contrast but suffers from impaired detail. The
higher the percentage value, the greater the contrast. Therefore,
we chose three stretching methods, linear, linear 1%, and linear
2%, to simultaneously quantize the original images. Then these
8-b single-channel images were superimposed into a false-color
image (RGB), as shown in Fig. 1(d). In the end, a better-quality
sample set was obtained.

The percentage rate of quantization is aligned with the dif-
ferent grayscale distribution of the dataset. The image I’ after
percentage quantization can be obtained with the following
equations:

255, Iy >1,
I, —1,
I'= 1:”—[”><255,Ib<lm,y<la (1)
a — 4b

0 ’ Iac,y S Ib

Histogram

Original

Fig. 3. Schematic diagram of percent linear stretches.

where I, and I}, are calculated as percentages, as shown in Fig. 3.
1, corresponds to the gray value obtained by subtracting the first
a% pixels from the maximum gray value in the gray histogram
of the original data. Similarly, I, corresponds to the gray value
obtained by adding the last a% pixels from the minimum gray
value. I, , denotes the gray value at the point (x,y), and « is
predefined according to the grayscale distribution of the dataset.
When o = 0, the percentage quantization is converted to linear
quantization. In this article, we set « to 0, 0.01, and 0.02.
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Fig. 4. Structure of proposed MDC blocks with different receptive fields. The
dilate rate is 1 in (a), and 2 in (b) and (c). In the backbone, MDC 1, 2, and 3 are
connected in series to extract multiscale features.

B. Dilated Convolution Improved Backbone

It can be known from many experiments that detection accu-
racy has a close relationship with the amount of information
captured. However, information from small objects is easily
weakened as the network deepens and the spatial resolution
decreases. Thus, this is one of the major drawback of small
object detection. In addition, background variations also have a
large interference on LMO detection and most existing methods
ignores the background information. Based on this considera-
tion, we optimized the original YOLO network and introduced
an MDC module in the backbone to extract more object and
object-background difference features at multiple scales. When
the network is more accurate at discriminating negative samples,
the detection rate of positive samples will also increase. The
standard dilated convolution operation is expressed as follows:

(Fxg)(x)= > F(m)g(n) 2)
m-+n=r
where F' denotes a discrete function and g is a discrete filter.
Then, the dilation factor can be generalized as

(Fxg)(r)= Y F(m)g(n). 3)

m+Iin=r
The *; is defined as a dilated convolution or an s-dilated convo-
lution. The standard convolution * is simply the 1-dilated con-
volution. The dilated convolutions can expand receptive fields
without losing resolution or coverage. In the dilated convolution
module designed in this study, there are three different dilated

convolution blocks. All dilated convolution kernels are discrete
3 x 3 filters.

FiJrl = Fi *9i Jj for i = 0, ].7 2. (4)

The specific structure of each block is illustrated in Fig 4. MDC 1
includes a standard convolution and a dilated convolution kernel
with a dilated rate of 1. MDC 2 and 3 mainly contain a dilated
convolution kernel with a dilated rate of 2. Benefiting from these
dilated convolution kernels, the receptive fields of the network
can be expanded without decreasing the resolution, and more
effective information can be captured.
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Fig. 5. Flowchart of backbone modules. (a) Original cross stage partial mod-
ule in CSPDarkNet. (b) The dilated module developed in this article. MDC:
Multiscale dilated convolution blocks.

In addition, the whole detection framework of our approach is
constructed based on YOLOvVA4. It has three main components:
1) backbone, 2) neck, and 3) detection heads. First, the backbone
is a CSPDarkNet module [20] that is optimized for small target
detection tasks and that combines many tricks, such as CSPX,
the Mish activation function, and Dropblock. It follows the filter
size and overall structure of the ResNe(X)t network, adding a
cross stage partial structure to each group of residual blocks. It
also reduces the parameters to make it easier to train. There are
five cross stage partial modules in the backbone. The first three
modules keep the original CSP structure, the latter two modules
use the developed dilated module, which is given in Fig. 5. This
dilated convolution module is constructed by connecting three
MDC blocks in series. Meanwhile, we fix the spatial resolution
after stage 3. Then, the high spatial resolution of the feature
maps can be maintained, and a large receptive field can also be
kept. Therefore, the added MDC module can capture more infor-
mation about objects and object-background features. Second,
the neck part includes spatial pyramid pooling (SPP) module,
feature pyramid network (FPN), and path aggregation network
(PAN) structures. The SPP component contains a multiscale
pooling structure, which can complete multiscale feature fusion.
Third, the prediction part includes three multiscale detection
heads. Both target prediction and loss calculation are realized
in this step. We fixed these modules with the same structure as
YOLOV4 to verify the effectiveness of our method. More details
can be seen in [20].

C. Contrast-Based Loss

According to the analysis above, we believe a satisfactory
loss function for LMO detection should focus more on indis-
tinguishable samples and reduce the effect of numerous simple
samples. The contrast-based (or contrast-sensitive) loss is de-
signed to improve the comprehensive detection performance of
LMO-YOLO. Common classification loss will lead to insuf-
ficient learning of the hard detection object area. On the one
hand, because the contrast between some small objects and the
background is very small, it is difficult for the network to detect.
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Fig. 6.  Visualization of the proposed contrast-based term S(a).

On the other hand, these hard samples only make up a frac-
tional part of whole samples. The contrast-based loss function
improves the feature quality by computing the contrast of each
anchor with its surrounding area. In this loss function, the weight
of each object sample is inversely proportional to the contrast.

The contrast of the two regions can also be conversely referred
to as the similarity of the two regions. There are many methods
that can be utilized, namely, Euclidean distance, Manhattan
distance, Minkowski distance, and Mahalanobis distance. They
all have their own advantages and disadvantages. In this study,
Mahalanobis distance is more suitable for regional contrast cal-
culation. It has higher stability and can eliminate the interference
of correlation between variables. Here, regional contrast based
on Mahalanobis distance is calculated by

M?(a) = (pta — 1) Oyt (ta — p11) (5)

where i, = 2 3 M 2; is the mean value of the inner area of an
anchor, which is shown as K1 in Fig. 2. u, = + Z _,x; is the
mean of the surrounding window, which is shown as K2 inFig. 2.

The size of K2 is designed to be twice as large as k1. That is,
keep the center point unchanged and multiply the original length
and width of each anchor by 2. C}, is the covariance matrix of
the surrounding window

1 XN

=5 Z

Hence, the larger the M (a), the greater the distance between the
anchor and its surrounding area, or the greater the contrast.

For a sample x with label y in a ship detection task, when it is

a positive sample (that is, y=1), the larger the M (a), the easier

itis to detect. On the contrary, when y=0, the smaller the M (a),

the easier it is to accurately distinguish. To eliminate the adverse

effects of singular sample data, we normalized M (a) to [0,1],

as shown in Fig. 6. The contrast-based weighting factor S(a) is
set as follows:

— )" (6)

S(a)=px (1-1=-p"). )

According to the distribution of training sample data, we set belta
value to 0.99. In this way, the samples with different contrast
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against background can be spread out evenly in a large range.
The detection results is better with this setting value. The S(a)
notation is independent of the model and the loss.

This balance term is applied to focal Loss. The recently
proposed focal loss [20] adds a modulation factor to the sigmoid
cross-entropy loss to reduce the relative loss of well-classified
samples and to focus on difficult samples. The focal loss can be
expressed as

_ —a(l —y')"log (y')
Fn= {— (I-a)(¥)log(l-y) y=0

where the factor (1 — y)7 to the standard cross entropy criterion.
The balance factor « is added to balance the uneven ratio of
positive and negative samples. However, for the approach in
this study, the contrast-sensitive focal loss can be written as

oo = {1 =95)0—y)og(y) y=1
7 —SyTog(l—y)  y=0.

Consequently, the larger the contrast between an anchor and its
surrounding area, the larger the S. If it corresponds to a positive
label (y = 1), the loss will be small. On the contrary, the loss
will be large. In addition, intersection over union loss (Lj,y) and
confidence loss (Lconf) are also weighted with this optimized
classification loss to form total loss in this method. IoU loss is
the CloU loss including the aspect ratio factor; confidence loss is
binary cross entropy loss (BCEloss), see [20] for details. Then,
the total loss is defined as follows, and A1, Ao, and A3 are the set
parameters

y=1"""

(€))

Fiowl = A1+ Leont + A2 - Loy + Az - Cy. (10)

IV. EXPERIMENTS

In this section, we show the efficacy of the proposed LMO-
YOLO and compare it with state-of-the-art methods on the
Gaofen (GF-1) satellite dataset. For some satellites, only low-
resolution single-band image can be obtained. This article is
proposed for such datasets, but they cannot be made public due to
confidentiality. Therefore, all experiments in this study are per-
formed using GF-1 single-channel data. The proposed method
was implemented using the PyTorch deep learning framework
and was trained on a workstation with an NVIDIA GeForce RTX
3090 GPU with 16-GB memory. In the rest of the manuscript, the
datasets are introduced first. Next, we describe the experimental
setup. After that, we show the experimental results and analysis.

A. Datasets

To evaluate the performance of the proposed method, we
conducted experiments on wide-field-viewing (WFV) data and
the panchromatic and multispectral sensor (PMS) data of the
GF-1 satellite. The spatial resolutions of these two images are
16 and 8 m, respectively. Their spectral ranges are 0.45-0.52 and
0.77-0.89 pum. Specific parameters of the two datasets are shown
in Table I. Most of the ships in these images are distributed in
the South China Sea, USA (e.g., Norfolk Harbor, Pearl Harbor,
and Naval Base San Diego), Russia (e.g., Murmansk), France
(e.g., Toulon), and Italy (e.g., Taranto). Due to the large size
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TABLE I
DATASET OVERVIEW
Satellite Sensor  Resolution  Spectral information Image size Sample size  Total samples
GaoFen-1 WEV 16m 0.45-0.52um 12000x 13400 512x512 3800
PMS 8m 0.77-0.89um 4548x%4500 512x512 3800
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Fig. 7.

of the original remote sensing image, we cut the images to
512 x 512 pixels, with 15% overlap. There is a total of 7600
slices, which constitute the entire dataset. The ratio of positive
to negative sample images was 1:2. Furthermore, there are many
types of ships in the training samples, and the size of the ship
target varies from 8 pixels to 35 pixels.

Moreover, many image blocks contain few target samples due
to the large amount of cloud and fog occlusion. Therefore, we
used the simulation method for small object augmentation [51]
to simulate samples. Ship samples of different types and sizes
were cut out and randomly added to the background image.
Then, the boundary was blurred by multisize Gaussian filters
so that the target and the background were better blended.
After that, we rescreened the obtained simulation samples and
removed the images with poorly fused images to obtain the final
dataset.

B. Implementation Details

To compare the proposed LMO-YOLO with state-of-the-art
methods more fairly, the training hyperparameters were set to
be the same as or similar to those of the comparison meth-
ods. Because the proposed method is a one-stage detector,
the YOLOv4 is selected as the baseline of the comparison
experiments. Furthermore, because the datasets were newly
constructed, YOLOv4 was reimplemented based on our datasets
and many improvements were added to the baseline. As a result,
the final detection precision on the two datasets were 92.32%
and 93.07%, respectively. The number of training epochs is 100.
The IoU threshold was set to 0.2 to obtain better results because
the object size was small. The confidence threshold was set to
0.3, and the NMS threshold was 0.5.

Training information. (a) Learning rate versus epochs; (b) Training loss and validation loss; (c) mAP versus epochs.

Additionally, the original YOLOv4 pretraining weights were
utilized as the initial parameters. High learning rates lead to
undesirable nonconvergence and smaller ones slow down the
convergence speed. Therefore, we choose a dynamic change
strategy for the learning rate [see Fig. 7(a)], as follows:

I7 = 17 (last_cpoch) * A", m = epoch/step_size

(11)

where we set the original learning rate (I7) to 0.001, and A was
set to 0.92.

Fig. 7(b) gives the training and validation loss curves. On the
one hand, we can observe that this network converges rapidly
when training. On the other hand, the difference between training
loss and verification loss is small. This shows that there is
no overfitting phenomenon in the proposed model. Fig. 7(c)
shows the mean average precision (mAP) versus epochs on the
validation set. We can see that the mAP increases dramatically
when the number of epochs is less than 20, and then slowly grows
and stabilizes. Eventually, it reaches the best fit the dataset.

C. Evaluation Metrics

To quantitatively evaluate the ship detection performance
of these methods, we chose accuracy evaluation indexes from
remote sensing community (Pq4, P, and P¢) and deep learning
community (precision, recall, and AP). However, to compute
these indicators, the true positives (TPs), false positives (FPs),
false negatives (FNs), and true negatives (TNs) in the detection
results need to be found first. Further, Intersection over Union
(IoU) is required, which represents the overlap ratio between the
prediction box S}, and ground truth box S,¢. It can be defined as

IoU = (Sp n Sgt) / (Sp U Sgt) . (12)
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Fig. 8.
results.

If ToU > the setting threshold value, this predicted box is
considered as true positive, otherwise it is considered as false
positive. If no predicted box covers the target area, it is treated
as a false negative. Otherwise, the region is a true negative.

Consequently, the detection probability (Pg), missed-
detection probability P, and false alarm probability Py are
defined as

Py =TP/GT
P, = FN /GT

13)
(14)

Visualization Results of the proposed LMO-YOLO on the constructed two GF-1 datasets. The green boxes are groundtruth and red boxes are predicted

Py = FP /(TP + FP). 15)

The precision and recall can be calculated as follows:
Precision = TP / (TP + FP) (16)
Recall =TP / (TP + FN) (17)

where, the GT is the number of true objects. It is not sufficient to
evaluate the performance of the model only using above indexes.
Another comprehensive indicator, average precision (AP) score,
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Fig. 9.
from the WFV dataset, and the rest are images from the PMS dataset.

is shown as follows:

1
AP = / P(R)dR (18)
0

where P(R) is the precision—recall (P-R) curve. It is the average
value of precision for each object category when the recall
varies from O to 1. Compared with other indexes, mAP reflects
the performance of the detection model more accurately and
intuitively. The model detection speed can be quantitatively
evaluated using time (f) and frames per second (FPS)

FPS =1/t (19)

D. Analysis of Different Scheme Settings

1) Analysis of the Trident Rescaling Scheme: This section
focuses on verifying the superiority of the proposed quantization
method. To illustrate the performance of the proposed quanti-
zation method, we conducted validation experiments. We com-
pared the proposed quantization method with five other methods:
linear, linear 1%, linear 2%, histogram equalization [52], and
linear postcontrast enhancement [53], [54]. We processed the
data using different quantization methods and fed them into
the same baseline network (YOLOV4) to detect the ships. The
detection networks shared the same parameter settings for a fair

(d) (® ()

Comparison results between the proposed method with trident rescaling and the compared methods with linear rescaling. The first two rows are images
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comparison, and the training samples were labelled identically.
The precision, recall and AP were used as evaluation metrics.
The results of the quantitative method validation are shown in
Table III. The comparative results of the detection performance
show the superiority of the method in this article. The proposed
quantization method effectively preserves the texture detail fea-
tures of the vessel while improving the contrast between the
ships and the background. Moreover, the method in this article
can effectively improve the recall rate and reduce the number of
missed ships.

2) Analysis of Innovations: Except for the rescaling method,
the other schemes proposed in this article have also been eval-
uated. As presented in Table II, the trident rescaling scheme
(TRS), MDC, and contrast-sensitive loss function (CSL) have
been verified for their effectiveness. “Selected modules” means
that the method adds different schemes based on the baseline
network (YOLOv4). For a method n, if there is a checkmark
under the corresponding schemes in the next cell, it means
that this scheme is included in this method. We can see that
each proposed schemes can indeed improve the model detection
performance. Although the most helpful operation for model
performance improvement is the quantization (about 3% in
AP), the MDC module and contrast-based loss strategy can
also produce positive effects. Finally, when all three schemes
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Fig. 10.
images from the WFV dataset, and the rest are images from the PMS dataset.
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Comparison results between the proposed method with trident rescaling and the compared methods with linear 1% rescaling. The first two rows are

TABLE II
QUANTITATIVE EVALUATION OF INNOVATION IN THIS ARTICLE

Methods | Baseline TRS MDC CSL | Recall | Precision | AP | Inference time
1 v 86.22 92.77 87.69 13.10
2 v v 89.12 94.06 91.14 13.10
3 v v 86.76 93.58 89.27 13.65
4 v v 87.03 92.95 89.41 13.37
5 v Vv v v 90.53 94.93 92.32 14.69

Note: TRS: Trident rescaling scheme. MDC: Multiscale dilated convolution CSL: Contrast-sensitive loss. The units of the above accuracy indexes

are all percentages (%), and the time is given in milliseconds (ms / image).

proposed in this study are included, the AP can be increased by
4.63% and the recall rate is improved by 4.31%. Although there
is an increase in inference time, this is acceptable.

E. Detection Results and Comparison

To illustrate the detection performance of LMO-YOLO, we
conducted comparative experiments on the constructed GF-1
datasets to compare the proposed method with state-of-the-
art object detection methods. These comparison methods in-
clude not only one-stage methods, such as YOLOv4 [20], and
SSD [55], and two-stage methods, such as RetinaNet [48] and

Faster-RCNN [56] but also a detection model R®-Net [45] for
small objects. Moreover, FMSSD [57] and CSFF [58], which
specifically designed for remote sensing object detetion, are also
used for comparison. The comparative experiments are fair and
extensive. For methods with open-source code, we use them
directly for testing; and for popular detectors like faster R-CNN,
the MMDetection project is utilized.

1) Experimentsfor LMO-YOLQO: The visualization results of
LMO-YOLO for the WFV and PMS datasets are given in Fig. §,
which includes image slices of different scenes containing many
ships. The test experiment is completed based on the images
after trident rescaling. However, due to the different gray scale
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Fig. 11.
images from the WFV dataset, and the rest are images from the PMS dataset.

TABLE III
QUANTITATIVE EVALUATION OF QUANTIZATION METHOD

No. |  Preprocess Method | Recall | Precision | AP
1 Linear 86.22 92.77 87.69
2 Linear 1% 87.10 92.94 87.85
3 Linear 2% 86.42 92.06 87.41
4 | Histogram equalization | 87.35 91.16 88.54
5 Linear + CE 86.43 93.02 88.75
6 Ours 89.16 93.97 91.28

Note: The units of the above accuracy indexes are all percentages (%).

ranges of the original image blocks, the false color images after
trident rescaling presents a different color. No matter what the
color is, the definition in the image blocks is higher, and the
targets are more salient than in the original images. We can
see that the size of the ship in our low-resolution WFV images
is small, while the size of the ship in the PMS images varies
greatly. Nonetheless, our approach can obtain good detection
performance. In Tables IV and V, specific numbers also show
that LMO-YOLO has the highest AP of the state-of-the-art
detectors.

2) Comparative Experiments on the WFV Dataset: The re-
sults on the WFV dataset compared with other state-of-the art
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Comparison results between the proposed method with trident rescaling and the compared methods with linear 2% rescaling. The first two rows are

methods are shown in Table IV. The optimal results are shown
in bold. The evaluation indexes demonstrate that the AP of
LMO-YOLO reaches 92.32%. This AP is significantly higher
than that of the other detectors investigated. Furthermore, the
recall and precision of LMO-YOLO are also better. Our ap-
proach also performs well on remote sensing evaluation indica-
tors. Compared with early classic detection algorithms, such as
FasterRCNN and SSD, our approach produces an approximately
13% improvement in detection probability (P4). LMO-YOLO
obtains the lower false alarm probability (P¢) than the meth-
ods specifically designed for remote sensing object detection,
like FMSSD. In comparison with the model (R3-Net) utilized
detect small objects, the proposed method also outperforms it.
Moreover, although its inference speed is not as fast as that
of SSD, LMO-YOLO still performed well in the studies we
investigated.

We applied the TRS to all methods and compared it with
different single quantization methods (e.g., linear, linear 1%,
and linear 2%) to verify its effectiveness. Table IV presents the
detailed quantitative results. Among all the methods evaluated,
the linear 1% rescaling scheme has a relatively better detection
effect than other single rescaling methods. However, there is
no significant difference between them. Nevertheless, the AP
of the TRS is 2%—-3% higher than any single rescaling method.
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TABLE IV
EVALUATION INDEXES OF DIFFERENT METHODS BASED ON WFV DATASETS

Accuracy (Remote Sensing)

Accuracy (Deep learning) Speed

Method Rescaling scheme
Py Pn P Recall Precision AP Time FPS
Lincar 7687 2313 1522 7687 8478 8131
Linear 1% 7730 2270 1505 7730 8495  81.62
FasterRCNN Linear 2% 7693 2307 1539 7693 8461  8lLl0 49 2299
Trident Rescaling 7879 2121 1393 7879 8607 8342
Lincar 7944 2056 1419 7944 8581 8405
. Linear 1% 7970 2030 1395 7970 8605 8413
RetinaNet Linear 2% 7952 2048 1431 7952 8569 8388 /17 2120
Trident Rescaling ~ 81.88  18.12 1209 8188 8791 860l
Linear 7816 2184 1486 7816 8514  81.92
Linear 1% 7865 2135 1467 7865 8533 8233
SSD Linear 2% 7842 2158 1492 7842 8508 8163 2442 4095
Trident Rescaling 8086  19.14 1337 8086 8663 8417
Linear 8284 1716 1166 8284 8334 8602
Linear 1% 8324 1676 1148 8324 8852 8612
FMSSD Linear 2% 83.08 1692 1160 8308 8840 8564 o177 30.15
Trident Rescaling 8477 1523 1003 8477 8997  87.98
Linear 8410 15.90 9.67 8410 9033 8681
Linear 1% 484  15.16 9.34 8484 9066  87.00
CSKF Linear 2% 8422 1578 9.75 8422 9025 8668 10 2018
Trident Rescaling 8638  13.62 8.13 8638 9187  88.64
Linear 8622 1378 723 8622 9277 87.6
Linear 1% 87.10  12.90 7.06 87.10 9294 8785
YOLOv4 Linear 2% 8642  13.58 7.94 8642 9206 8741 2039 3789
Trident Rescaling ~ 89.16  10.84 6.03 89.16 9497 9128
Lincar 8455 1545 832 8455 9168 8674
Linear 1% 85.61 14.39 8.94 8561 9106 8711
3
R7-Net Linear 2% 85.27 14.73 9.19 8527 9081 8635 2220 4505
Trident Rescaling 8756 1244 7.56 87.56 9244  89.06
Lincar 8733 12.67 643 8733 9357  83.92
Linear 1% 8782 1218 5.98 87.82 9402  89.57
LMO-YOLO Linear 2% 87.47 12.53 6.74 8747 9326 8876 o061 3495
Trident Rescaling 90.53 9.47 5.07 90.53 94.93 92.32

Note: Except for AP, which has no units, the units of the above accuracy indexes are all percentages (%), and the time is given in milliseconds (ms / image).

Figs. 9-11 also illustrate the comparison results between the
LMO-YOLO with trident rescaling and other compared methods
with linear n% rescaling. The first two rows in each figure are
the images from WFV data. It is observed that the targets in
trident rescaling images is clearer, and the image contrast is
higher.

3) Comparative Experiments onthe PMS Dataset: To further
verify the effectiveness and versatility of LMO-YOLO for dif-
ferent dataset, comparative experiments on the PMS dataset with
8-m spatial resolution were also conducted. As shownin Table V,
our approach has the highest AP of 93.07% and its P, reaches
90.75%, which is higher than that of the other state-of-the-art
detectors. Although the inference speed of LMO-YOLO is not
the fastest, it is much faster than other two-stage methods and
is acceptable. The analysis of the quantization method produces
the same conclusion as the above experiment. The advantage of
the TRS is quite obvious. Figs. 9—-11 show the visual detection
maps to demonstrate the results more intuitively. The last two
rows in each figure show images from PMS dataset. Except for
LMO-YOLO, the quantization scheme of the methods is the

single linear n%. From these figures, we can see that the missed
detection rate as well as false alarm rate of our approach is
lower than those of the other methods. This also confirms that the
quantization scheme proposed in this article is indeed important.
We can found that our model does well in both datasets, which
indicates that it has a high generalization ability.

F. Discussion

Thanks to the trident rescaling module, the 8-b images quan-
tized from the original remote sensing data have higher quality.
The constructed MDC module and contrast-sensitive loss can
more accurately detect targets with low contrast against the
background. We can also observe from Tables III-V that the
approach proposed in this study can indeed improve the detec-
tion accuracy for small-sized objects in low-resolution imagery.
Unfortunately, some targets that are covered by thick clouds
cannot be detected, and some sea clutter or broken clouds may be
recognized as false alarms. Object detection tasks will face dif-
ferent challenges in different scenes. In the follow-up research,
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TABLE V
EVALUATION INDEXES OF DIFFERENT METHODS BASED ON PMS DATASETS

Accuracy (Remote Sensing)

Accuracy (Deep learning) Speed

Method Rescaling scheme
P4 Pn P Recall Precision AP Time FPS
Linear 77.14  22.86 1565  77.14 8435 81.53
Linear 1% 7731 22.69 1588 7731 84.12 8143
FasterRCNN Linear 2% 77.72 2228 15.38 77.72 84.62 g06 388 2279
Trident Rescaling  79.03 20.97 1417 79.03 85.83 84.26
Linear 7958 2042 1437 7958 85.63 84.55
. Linear 1% 7977 2023 1453 7977 8547 8433
RetinaNet Linear 2% 8003 1997 1398 8003 8602  s4gl 4729 2LIS
Trident Rescaling ~ 82.95 17.05 12.41 82.95 87.59 8623
Linear 7804 21.96 1474 7804 8526  82.92
Linear 1% 7854 2146 1485 7854  85.15 82.48
SSD Linear 2% 7892 21.08 1458 7892 8542 8326 2436 4105
Trident Rescaling ~ 81.45 18.55 13.41 81.45 86.59  85.25
Linear 82.98 17.02 1166 8298 8834  86.72
Linear 1% 83.27 16.73 12.01 83.27 87.99 8653
FMSSD Linear 2% 8348 1652 1152 8348 8848 8604  ->27 3006
Trident Rescaling 8522 14.78 10.05 8522  89.95 88.81
Linear 8435 15.65 9.66 8435 9034 8746
Linear 1% 84.58 15.42 9.88 8458  90.12  87.26
CSFF Linear 2% 8503 14.97 9.25 8503 9075 8765 ~031 1988
Trident Rescaling ~ 86.64 13.36 8.12 86.64  91.88  89.41
Linear 86.43 13.57 782 86.43 9218 88.24
Linear 1% 86.61 13.39 8.08 86.61 91.92  88.02
YOLOv4 Linear 2% 87.03 12.97 723 87.03 9277 8353 2054 37.68
Trident Rescaling ~ 89.25 10.75 5.87 89.25 9413 91.69
Linear 85.23 14.77 8.74 85.23 9126 8698
Linear 1% 85.78 14.22 9.13 8578  90.87 8636
3
R”-Net Linear 2% 86.02 13.98 7.98 86.02 92.02 g745 2213 4519
Trident Rescaling 88.77 11.23 6.98 88.77 93.02 90.11
Linear 87.16 12.84 6.97 87.16  93.03 9005
Linear 1% 87.48 12.52 7.12 8748 9288  89.87
LMO-YOLO Linear 2% 87.81 12.19 6.68 8781 9332 9032 2026 3418
Trident Rescaling ~ 90.75 9.25 5.07 90.75 9493  93.07

Note: Except for AP, which has no units, the units of the above accuracy indexes are all percentages (%), and the time is given in milliseconds (ms / image).

we will conduct more in-depth exploratory research from the
view of complex scenes perception. A faster and lighter detector
for embedded devices is another work we intend to study.

V. CONCLUSION

In this study, a novel ship detection model, LMO-YOLO,
for low-resolution optical satellite imagery is proposed. First,
a trident linear rescaling scheme was developed to quantize
the original satellite images, so the obtained 8-b images can
contain more detailed information. Second, we kept the spatial
resolution of the last few stages of the backbone and added
dilated convolution to expand the receptive field and extract
more object and object-background features. Finally, to bal-
ance the easy-to-detect and hard-to-detect samples in terms
of contrast, an adaptive weighting scheme was designed. The
experiments demonstrated the following: 1) The rescaling mod-
ule retained the 8-b images with more useful features; 2) the
optimized backbone effectively prevented the weakening of
small target information and learned much useful information;
and 3) the contrast-sensitive loss scheme improved the robust-
ness of the network to variation in object-background contrast.

The experimental results show that the proposed LMO-YOLO
outperformed other state-of-the-art methods.
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