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Unsupervised Hyperspectral Pansharpening by Ratio
Estimation and Residual Attention Network

Jinyan Nie™, Qizhi Xu

Abstract— Most deep learning-based hyperspectral pansharp-
ening methods use the hyperspectral images (HSIs) as the
ground truth. Training samples are usually obtained by blurring
and downsampling the panchromatic image and HSI. However,
the blurring and downsampling operation lose much spatial
and spectral information. As a result, the model parameters
trained by these reduced-resolution samples are unsuitable for
fusing full-resolution images. To tackle this problem, we propose
an unsupervised hyperspectral pansharpening method via ratio
estimation (RE) and residual attention network (RE-RANet). The
spatial and spectral information of the fused image are derived
from the original panchromatic and HSI rather than reduced-
resolution images. At first, we generate the initial ratio image
using the ratio enhancement method. The initial ratio image is
fine-tuned by the residual attention network (RANet) to generate
a multichannel ratio image. Then, we inject the multichannel
ratio image that contains spatial detail information into the
HSI. Finally, the generated hyperspectral image is constrained
by the spatial constraint loss and the spectral constraint loss.
Experiments on the EO-1 and Chikusei datasets verify the
effectiveness of the proposed method. Compared with other state-
of-the-art approaches, our method performs well in qualitative
visual effects and quantitative evaluation indicators.

Index Terms—Deep learning, hyperspectral pansharpening,
ratio estimation (RE), residual attention network (RANet).

I. INTRODUCTION
YPERSPECTRAL remote sensing can obtain rich spec-
tral information of ground objects, which can be used
for target detection, land cover classification, artificial inter-
pretation, and so on. Due to the limitation of physical con-
ditions, there is a trade-off between spectral resolution and
spatial resolution of hyperspectral images (HSIs). Hyperspec-
tral pansharpening aims to fuse the HSI and panchromatic
image (PAN) to improve the spatial resolution of the HSI, and
various methods have been proposed [1].

Traditional hyperspectral pansharpening methods can
be roughly divided into four main branches: compo-
nent substitution (CS), multiresolution analysis (MRA),
Bayesian, and matrix factorization (MF). The CS-based
pansharpening methods contain principal component analy-
sis (PCA) [2], Gram—Schmidt (GS) [3], and intensity—hue—
saturation (IHS) [4], and so on. The CS-based pansharpening
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methods retain high fidelity of spatial details and are easy
to be implemented. However, the spectral mismatch between
the PAN and HSI will result in spectral distortion. The
classic MRA-based pansharpening methods include decimated
wavelet transform (DWT) [5], smoothing filter-based inten-
sity modulation (SFIM) [6], guided filter [7], and Laplacian
pyramid [8]. The MRA-based pansharpening methods keep
spectral consistency. However, the design and implementation
of spatial filters are complex. Because fusion problems are
usually ill-posed, Bayesian [9] methods provide a convenient
way to regularize the problem by defining an appropriate
prior distribution for the scenarios of interest. The MF-based
methods [1] depend on the unmixing process. The coupled
nonnegative MF (CNMF) [10] is a typical representative of
this kind of method.

In recent years, deep learning technology succeed in com-
puter vision and image processing. Naturally, many deep
learning-based methods have been introduced for HSI pan-
sharpening tasks. Zheng et al. [11] proposed a hyperspectral
pansharpening method based on guided filter and deep residual
learning. They generated the initial HSI by enhancing the
spatial information and then mapping the residual between the
initial HSI and the reference HSI to improve fusion accuracy.
He et al. [12] designed a spectral-fidelity convolutional neural
network for hyperspectral pansharpening. They focused on
the decomposability of HSI details and introduced a loss
function of spectral fidelity. Zheng et al. [13] introduced a
hyperspectral pansharpening method based on deep prior and
dual attention residual network. They upsampled the HSI to
the scale of PAN through a deep hyperspectral prior algorithm.
Then, they designed a dual-attention residual network to learn
spectral and spatial information adaptively. Xie et al. [14]
proposed a 3-D generative adversarial network (GAN) for
hyperspectral pansharpening. They used adversarial learning to
search for the optimal high-resolution HSI to fool the discrim-
inator network. Their loss functions contain global constraint,
spectral constraint, and spatial constraint. Dong et al. [15]
proposed a Laplacian pyramid dense network for hyperspectral
pansharpening. The subband residuals were extracted from
PAN and were injected into the upsampled HSI to reconstruct
the high-resolution HSI step by step. This method simplifies
the pansharpening problem into several pyramid-level learning
issues.

The above-mentioned deep learning pansharpening methods
take the original HSI as the ground truth, resulting from a
lack of high-resolution HSI for supervision in the training
process. And the reduced-resolution PAN and HSI are used
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as the training samples according to Wald protocol [16]. The
relationship between high-resolution and low-resolution HSIs
cannot be simply simulated via blurring and downsampling.
To tackle these problems, we propose an unsupervised hyper-
spectral pansharpening method by ratio estimation (RE) and
residual attention network (RE-RANet). Our method preserves
rich spatial and spectral information by pansharpening on
the original HSI and PAN. First, the initial ratio image is
generated by the ratio enhancement method and then sent
to the residual attention network (RANet) for fine-tuning.
Second, the spatial detail information and spectral information
are combined by multiplying the upsampled HSI with the
generated multichannel ratio image. Third, spatial constraint
loss and spectral constraint loss are designed to guide network
optimization.

The rest of this letter is organized as follows. The
RE-RANet is described in Section II. Experiments and analy-
sis are given in Section III. The conclusion is in Section IV.

II. METHODOLOGY
The proposed method mainly contains three parts: 1) gener-
ating the initialized ratio image; 2) fine-tuning the ratio image
by RANet; and 3) spatial constraint and spectral constraint.
The flowchart of the RE-RANet is given in Fig. 1.

A. Ratio Estimation

The RE strategy is inspired by the ratio enhancement
pansharpening method [17]. It considers that the ratio of PAN
to the degraded image is equal to the ratio of fused image to
low-resolution HSI (LRHS). It can be expressed as

PG, j) _ kG, ))
DG, j) — Hii.j)’
where (i, j) is the coordinate of the pixel in the image, P
represents the PAN, D is the degraded image, F is the fusion

result, H is the upsampled HSI, and & stands for band index.
For the fused images, it can be rewritten as

P@,J)
DG, J)

k=1,2,....n (1)

F(@, j)= x Hi(i,j), k=1,2,...,n (2)

Flowchart of RE-RANet. @ represents the elementwise summation and ® represents the elementwise multiplication.

where n is the number of bands in the HSI.

The hypothesis is that the grayscale information of PAN
can be eliminated by dividing the PAN from its degraded
image. The ratio of PAN to degraded image preserved the
spatial detail information, while the HSI contains spectral
information. Multiplying these two can combine the spatial
information with spectral information, effectively. Since the
degraded image is unknown, the low-resolution PAN (LPAN)
is calculated as the estimate of degraded image. To obtain
LPAN, mean filter is implemented on PAN, as shown in
follows:

L@, j) = (PxM)(, j) 3)

where M represents a mean filter, and L represents the LPAN.
The initial ratio image R, can be expressed as
_ PG, )

LG, j)

Then, the ratio image R, (i, j) is input into the RANet. The
output of the network is a multichannel ratio image R’, which
has the same number of bands as the HSI. It can be expressed
as

R.(i, J) “)

R, )= f(R(, j); 0) )

where f(-) denotes the RANet, @ is the trainable parameters
of the network. After obtaining the new multichannel ratio
image, it is injected into the HSI to obtain the high-resolution
HSI (HRHS), which can be expressed as

Fe(i, j) = R.(, j) x He(i, j), k=1,2,...,n. (6)

B. Architecture of the RANet

The initial ratio image is coarse, so the RANet is designed
to fine-tune it and the network is no need to be complex.
The architecture of RANet consists of two cascading spatial
residual attention blocks (SRAB) and a skip connection. Each
SRAB consists of the convolution operation, spatial atten-
tion (SA) module, and skip connection. The kernel size of the
first and second SRABs are 5 x 5 and 3 x 3, respectively. The
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corresponding number of extracted feature maps is 512 and
256. My in the SA module refers to the spatial attention mask,
and it can be obtained via 1 x 1 convolution and sigmoid
layer. The edge and textured areas are rich in high-frequency
information, and the smoother areas are rich in low-frequency
components, correspondingly. The former is harder to sharpen
than the latter. Therefore, the SA module is built to take
full advantage of spatial relationships, and skip connection is
adopted for feature reuse and improving training stability.

C. Loss Functions

The loss functions consist of spatial constraint loss and
spectral constraint loss, which can be defined as

L=L,+oaL, )

where L, represents the spatial constraint loss and Lj, denotes
the spectral constraint loss, a is the tunable parameter to
balance L, and L.

The spatial constraint loss L, can be expressed as

| A 1N .
Ly =3 S = (@) + oy SIV ) -5 ()]}
i=1 =1
(8)

where N is the number of training data, I’f is the i"* HRHS,
I, denotes the PAN, and || - || 7 stands for the matrix Frobenius
norm. h(-) is the high-pass filter to extract high-frequency
information of the image, and V(-) is the gradient operator
to obtain the gradient information of the image. The goal of
our method is to inject the spatial information of the PAN into
the HSI. Because there is no high-resolution HSI as a ground
truth, we use the high-frequency information and gradient
information of the PAN to constrain the spatial information
of the fusion image.

Spectral information of fused images is provided by HSI.
The spectral constraint loss L, can be expressed as

1 A .
Ly = > [V s (1) = 1l ©)
i=1

where g(-) is a Gaussian filter, | represents the downsampling
operation, and [, denotes the HSI. The purpose of blurring
and downsampling the fused image is to degenerate the
fused image into a low-resolution HSI, so that the spectral
information of the HRHS is consistent with the original HSI.

III. EXPERIMENTS AND ANALYSIS
A. Datasets and Implementation Details

To verify the effectiveness of the algorithm, experiments are
conducted on two public datasets. The first one is collected by
the Earth Observing-1 (EO-1) satellite. The spatial resolution
of Hyperion HSI camera is 30 m, and the spectral resolution
is 10 nm with 242 bands ranging from 400 to 2500 nm. The
ALI camera produces PAN with a spatial resolution of 10 m.
In the experiment, we used 162 bands without water vapor
absorption bands and noise bands. The HSI and PAN use for
training are 1200 x 182 x 162 pixels and 3600 x 546 pixels,
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Fig. 2. Visual results of different methods in EO-1. (a) Pan, (b) upsampled
HSI, (c) GFPCA, (d) HySure, (e) SFIM, (f) CNMF, (g) DRCNN, (h) DHP-
DARN, (i) DRSAN, and (j) proposed method. The false color image is chosen
for clear visualization (red: 29, green: 23, blue: 16).

TABLE I
QUANTITATIVE ASSESSMENT FOR EO-1 DATASET

Method  Q (1) ERGAS (1) SAM () CC (1) RMSE (}) Time(s) (1)
GFPCA  0.7789 8.0542 73130 00172 113118  2.1498
HySure 0.8849 67296 54725 09011 8.6989  84.0886
SFIM 07674 8.8168  6.0191 0.8997 14.6828  2.3386
CNMF 08356 69783  5.5207 0.8849 10.6556  16.1294
DRCNN 07670 27.7391 15.5770 0.6462 27.4370  1.1289
DHP-DARN 0.8367 54264  6.0253 0.8793 7.9583  2.6937
DRSAN 08524 58395 59374 0.8532 8.2947  2.9343
Proposed 0.9104 5.1973 52649 09221 7.3834  2.1149

respectively. The HSI and PAN use for the test are 133 x
133 x 162 pixels and 399 x 399 pixels, respectively. The
second dataset is the Chikusei dataset [18]. It was collected by
the Headwall Hyperspec-VNIR-C imaging sensor in Chikusei,
Ibaraki, Japan. It provides a spatial resolution of 2.5 m, and
128 spectral bands ranging from 363 to 1018 nm. After noise
bands elimination, 124 bands remain for the experiment. Since
the Chikusei dataset does not contain PAN, we utilized the
synthesized PAN and HSI. In training, the size of HSI and PAN
are 150 x 150 x 124 pixels and 450 x 450 pixels, respectively.
In the test, the size of HSI is 100 x 70 x 124 pixels, and the
PAN is 300 x 210 pixels.

The size of HSI patches used in the training model is
30 x 30 pixels, and the PAN patches are 90 x 90 pixels.
We set the batch size to 16 and the initialized learning rate to
0.001. The decay rate is set to 0.99 with decay step 10000. The
RMSProp optimizer is adopted. In loss functions, a is set to 1.

B. Evaluation Metrics and Compared Methods

To evaluate the fusion quality of different methods objec-
tively, several quality evaluation metrics are used, includ-
ing quality index (Q) [19], erreur relative globale adi-
mensinnelle de synthése (ERGAS) [20], spectral angle map
(SAM) [21], cross correlation (CC) [22], root mean squared
error (RMSE) [1], and time [15].

To verify the effectiveness of the proposed method, seven
different hyperspectral pansharpening methods are used for
comparison, including guided filter PCA (GFPCA) [23],
HySure [24], SFIM [25], CNMF [26], deep residual convo-
lutional neural network (DRCNN) [27], deep hyperspectral
prior and dual-attention residual network (DHP-DARN) [13],
and deep residual spatial attention network (DRSAN) [28].
In addition, the traditional pansharpening methods are per-
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Fig. 3. Spectral reflectance difference values at four randomly selected
locations on EO-1 dataset. Coordinate (a) (129, 226), (b) (138, 72), (c¢) (89,
90), and (d) (158, 76).

f ‘r!x

Fig. 4. Visual results of different methods in Chikusei dataset. (a) Pan,
(b) upsampled HSI, (c) GFPCA, (d) HySure, (e) SFIM, (f) CNMEF,
(g) DRCNN, (h) DHP-DARN, (i) DRSAN, and (j) proposed method. The
false color image is chosen for clear visualization (red: 60, green: 40, blue:
20).
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locations on Chikusei dataset. Coordinate (a) (42, 189). (b) (58, 93), (¢) (90,
147), and (d) (20, 149).

formed on Intel Core 17-8700 CPU at 3.20 GHz. The deep
learning pansharpening methods are performed on NVIDIA
GeForce GTX 1080Ti GPU.

C. Experiments and Discussion

The visual results on the EO-1 dataset are illustrated in
Fig. 2. It is observed that the proposed method has good visual
results. The GFPCA and SFIM have good color fidelity, but

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

TABLE 11
QUANTITATIVE ASSESSMENT FOR CHIKUSEI DATASET

Method  Q (1) ERGAS (1) SAM () CC (1) RMSE (}) Time(s) (1)
GFPCA  0.6996  7.7778 _ 5.997 0.8094 104624  0.6142
HySure 0.8201 4.3335 52672 0.8256 9.3447  28.1752
SFIM  0.8202 9.6464  4.1682 0.8439 15.1758  0.4894
CNMF  0.8946 62779 37672 09146 85365  3.8101
DRCNN 07630 84678  4.2339 0.8089 19.3449  0.5679
DHP-DARN 0.8736 43654 37864 0.8937 82941  0.6934
DRSAN 08683 45246 39532 0.8796 8.4892  0.7247
proposed  0.9028  4.1904  3.6381 09298 7.3851  0.6534
TABLE III

QUANTITATIVE RESULTS WITH DIFFERENT PARAMETERS

Data set o Q (1) ERGAS () SAM (J) CC () RMSE (J)
01 74749  7.0828 75784 08375  8.9346

Eo.f 05 08895 52749 6.8053 09142  7.7804
1 09104 51973 52649 09221  7.3834
507949  6.7854 58923 0.8642  9.3585

01 08234 67384 59649 08197  9.5538
Chikuse 09011  5.7876 48346  0.8879  8.6835
0.9028  4.1904 3.6381 09298  7.385

508532  6.9678 40896 0.8563  8.9463

the spatial details are blurred. The spatial detail of HySure and
CNMF are clear, but their color fidelity are poor, especially
in the lake area of zoom. The spatial details and color
fidelity of DRCNN are mediocre. Especially on the shore,
there is significant distortion. DHP-DARN and DRSAN are
a little fuzzy compared to the proposed method. Quantitative
assessments of different methods on the EO-1 dataset are given
in Table I. It can be found that the proposed method obtains the
most significant Q and CC values, and the smallest ERGAS,
SAM, and RMSE values. In comparison to the traditional
methods such as GFPCA, HySure, SFIM, and CNMEF, the
testing time of proposed method is faster. In comparison to
the deep learning methods, the proposed algorithm is more
time-consuming than DRCNN, but significantly improves the
fusion effect. The spectral reflectance difference values of dif-
ferent methods are compared to verify the spectral preservation
capability. In each subfigure, the spectral reflectance difference
closer to the baseline (0), the better the spectrum is preserved.
On the EO-1 dataset, it can be seen intuitively from Fig. 3
that the spectral reflectance difference values of the proposed
method is close to the baseline. Compared with other methods,
the spectrum of the proposed algorithm is better preserved.
Fig. 4 shows the visual results of different methods on
the Chikusei dataset. We can see that the GFPCA, SFIM,
and DRCNN have poor spatial detail preservation and color
fidelity. Both HySure, CNMF, DHP-DARN, and DRSAN and
the proposed method have fine spatial detail and color fidelity.
However, the detailed reconstruction of the proposed algorithm
is best. Quantitative assessments of different methods on the
Chikusei dataset are given in Table II. It can be seen that our
method obtains the most significant QO and CC values, and
the smallest ERGAS, SAM, and RMSE values. In addition,
the testing time of the proposed algorithm is above average
compared with other methods. The comparisons of spectral
reflectance difference values on Chikusei are given in Fig. 5.
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It can be found that the fluctuation of the spectral reflectance
difference values of the proposed method is smaller than that
of other methods. That is to say, the spectral distortion of the
proposed method is smaller than other methods.

In order to explore the influence of parameters in (7) on the
fusion effect, different parameters are selected for experiments,
as shown in Table III. It can be seen that the evaluation index
of o = 1 is better than other parameters. Therefore, a = 1 is
set in the experiment to balance spatial constraint loss and
spectral constraint loss.

IV. CONCLUSION

In this letter, an unsupervised HSI pansharpening method
based on RE-RANet is proposed. Our method directly fuses
on the original images rather than on the reduced-resolution
images. The main contribution of our method is fine-tuning the
coarse ratio image via the RANet and injecting spatial details
into HSI. Additionally, a spatial constraint loss and a spectral
constraint loss are proposed to preserve the spatial and spectral
information in the fused images. The experimental results
demonstrated that RE-RANet achieved a satisfactory fusion
performance in visual comparison and quantitative evaluation.
This method uses bilinear interpolation to upsample HSI,
which will blur the edges of HSI and reduce the fusion
accuracy. In the future, we plan to use the deep image prior
technique in the upsampling process and reduce the spectral
and spatial distortion before fusion.
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