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A B S T R A C T   

Co-registration of multimodal remote sensing (RS) images (e.g., optical, infrared, LiDAR, and SAR) is still an 
ongoing challenge because of nonlinear radiometric differences (NRD) and significant geometric distortions (e.g., 
scale and rotation changes) between these images. In this paper, a robust matching method based on the 
Steerable filters is proposed consisting of two critical steps. First, to address severe NRD, a novel structural 
descriptor named the Steerable Filters of first- and second-Order Channels (SFOC) is constructed, which com-
bines the first- and second-order gradient information by using the steerable filters with a multi-scale strategy to 
depict more discriminative structure features of images. Then, a fast similarity measure is established called Fast 
Normalized Cross-Correlation (Fast-NCCSFOC), which employs the Fast Fourier Transform (FFT) technique and 
the integral image to improve the matching efficiency. Furthermore, to achieve reliable registration performance, 
a coarse-to-fine multimodal registration system is designed consisting of two pivotal modules. The local coarse 
registration is first conducted by involving both detection of interest points (IPs) and local geometric correction, 
which effectively utilizes the prior georeferencing information of RS images to address global geometric dis-
tortions. In the fine registration stage, the proposed SFOC is used to resist significant NRD, and to detect control 
points (CPs) between multimodal images by a template matching scheme. The performance of the proposed 
matching method has been evaluated with many different kinds of multimodal RS images. The results show its 
superior matching performance compared with the state-of-the-art methods. Moreover, the designed registration 
system also outperforms the popular commercial software (e.g., ENVI, ERDAS, and PCI) in both registration 
accuracy and computational efficiency. Our system is available at https://github.com/yeyuanxin110/SFOC-Mu 
ltimodal_Remote_Sensing_Image_Registration_System.   

1. Introduction 

Nowadays, image registration drives extensive application in the 
fields of remote sensing, computer vision, and medical imaging. In 
general, image registration is a prerequisite step for remote sensing (RS) 
image processing and analysis applications, such as image fusion (Sta-
thaki, 2011), change detection (Seydi et al., 2020), and environmental 
monitoring (Behling et al., 2014). Moreover, the effectiveness of these 
subsequent applications is often directly affected by registration accu-
racy, even if misregistration is only within a pixel range. The key to RS 
image registration is to find an evenly distributed and high-precision set 
of control points (CPs) as much as possible, and then to calculate the 

optimal geometric transformation model. The rapid and explosive 
growth of RS image datasets (e.g., optical, infrared, SAR, and LiDAR) 
promotes the development of the aerospace industry. However, these RS 
images are usually captured by either different sensors from different 
perspectives or the same sensor in different periods (Zitová and Flusser, 
2003). These factors have brought a great challenge for achieving pre-
cise co-registration, and it is difficult to develop a fully universal method 
to cope with all registration cases. Any kind of image registration al-
gorithm needs to consider the imaging principle, radiometric and geo-
metric distortions, noise interference, clouds occlusions, and so on. 

Generally, the georeferencing of RS image data can be divided into 
two different types: images with direct geo-referencing have been 
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geometrically corrected (i.e., Level 2 data), and images with the rational 
polynomial coefficients (RPCs) without geometric correction (i.e., Level 
1 data). Since the RPCs can be supplied by commercial satellite image 
vendors instead of the rigorous sensor model to conceal all the technical 
details relating to cameras and satellite orbits (Zhang and Zhu, 2008), it 
has been widely used for conducting the georeferencing of high- 
resolution satellite imagery (Shen et al., 2017). However, the RPCs are 
usually biased that caused by the inaccurate measurement of the satel-
lite ephemeris and instrument calibration, which results in the geore-
ferencing images having an offset typically ranging from several pixels 
to dozens of pixels in the image space (Jiang et al., 2015; Xiang et al., 
2021). Fig. 1 exemplarily shows two pairs of multimodal images with 
the direct geo-referencing, which include a pair of Google and GaoFen-2 
Panchromatic images and a pair of Google and Sentinel-1 SAR images. It 
can be clearly observed that the implementation of georeferencing only 
can address the obvious global geometric differences (e.g., rotation and 
scale changes). 

Although the georeferencing implementation just eliminates global 
geometric distortions, it can provide assistance for subsequent fine 
registration. It is evident from Fig. 1 that the most serious challenge for 
fine registration is nonlinear radiometric differences (NRD) between 
multimodal images. Moreover, the interference of strong speckle noise is 
very serious on the SAR images, which is also an inevitable problem for 
the registration of SAR and other types of images. These challenges make 
it difficult to detect precise CPs even by visual inspection. Therefore, this 
paper will make use of the georeferencing information to handle global 
geometric differences, and then develop a robust matching method to 
resist NRD and noise interference, realizing the fast and robust regis-
tration for multimodal RS images. 

To date, numerous efforts have been made to overcome these above 
challenges and improve the performance of multimodal RS image 
registration. These methods can be commonly classified into three cat-
egories with the taxonomy of intensity-based methods (IBM), feature- 
based methods (FBM), and learning-based methods (LBM) (Jiang 
et al., 2021). 

IBM evaluates the similarity of intensity information by using a 
template matching strategy, which relies on the selection of similarity 
measures that play a pivotal role in this process. According to the 

different image representation domains, IBM can usually be divided into 
spatial domain and frequency domain. The most common similarity 
measures consist of three types in the spatial domain: the sum of squared 
differences (SSD) (Zitová and Flusser, 2003), the normalized cross- 
correlation (NCC) (Yun-hui, 2013), and the mutual information (MI) 
(Chen et al., 2003). These measures have been used extensively in image 
registration. Nonetheless, SSD and NCC are sensitive to nonlinear 
radiometric differences (NRD) that generally exist in different kinds of 
multimodal RS images (Uss et al., 2016). Although MI has been testified 
to be effective for resisting NRD, MI is clumsy and time-consuming 
because it must compute the joint histogram based on statistical simi-
larity (Suri and Reinartz, 2009). To improve the computational effi-
ciency, the phase correlation (Reddy and Chatterji, 1996) is expanded to 
align images by utilizing the Fast Fourier Transform (FFT) in the fre-
quency domain (Xiang et al., 2020a). Tong et al. (2015) presented a 
subpixel phase correlation method using singular value decomposition 
(SVD) and the unified random sample consensus (RANSAC) (Fischler 
and Bolles, 1981) to improve the robustness of multispectral image 
registration. Wan et al. (2019) designed a stepwise algorithm, called 
least-squares fitting-based phase correlation (SLSF-PC), to perform 
illumination-insensitive image matching. Although the phase correla-
tion has illumination invariance, it is not enough robust to NRD and 
noise that exist in multimodal images, especially in optical and SAR 
images. Therefore, these disadvantages limit the application of IBM in 
the multimodal registration field. 

FBM differs from IBM to comprise the remarkable and invariant 
features (e.g., point features, line features, and region features), which 
evaluates the similarity of these significant features rather than intensity 
information to achieve registration. Such methods generally consist of 
common feature extraction and feature matching, with the most com-
mon method to be Scale Invariant Feature Transform (SIFT) (Lowe, 
2004) and its variants, such as SAR-SIFT (Dellinger et al., 2014), adap-
tive binning SIFT (Sedaghat and Ebadi, 2015), and OS-SIFT (Xiang et al., 
2018). The above algorithms take advantage of these invariant features 
to resist geometric distortions, but it is difficult to extract a large number 
of uniform and stable features from multimodal images with significant 
NRD, which has its limitations in multimodal registration application. 
To tackle these problems, a growing number of novel and valid 

Fig. 1. Example of multimodal images with direct georeferencing. (a) Google (Left) and Panchromatic (Right) images. (b) Google (Nether) and SAR (Upper) images.  
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descriptors have been designed based on structural and shape features, 
which are inspired by multimodal natural image matching (Shechtman 
and Irani, 2007) and multimodal medical image registration (Heinrich 
et al., 2012). Given the advantages of phase congruency in image 
perception (Morrone and Owens, 1987), Ye et al. (2017) designed a 
histogram of orientated phase congruency (HOPC) descriptor by inte-
grating the phase congruency with an orientation histogram to extract 
distinct structural features. Furthermore, Cui and Zhong, (2018) con-
structed a multi-scale phase consistency (MSPC) taking advantage of the 
Log-Gabor odd-symmetric wavelet, then the Euclidean distance of the 
MSPC descriptor was used as a similarity measure to detect correspon-
dences. Similarly, a phase congruency structural descriptor (PCSD) was 
established using the phase congruency structure image by (Fan et al., 
2018), which extracts structure information by employing the Log- 
Gabor filter responses over different orientations and scales. With the 
superiority of the phase congruency in resisting NRD, Li et al. (2019) 
proposed a radiation insensitive feature based on phase congruency and 
a maximum index map, named radiation-variation insensitive feature 
transform (RIFT), which has been successfully validated on different 
types of multimodal images. Although these phase-congruency-based 
methods have been proven to improve the performance of multimodal 
registration, they required the amplitude and orientation of phase con-
gruency, leading to complicated calculation and time-consuming 
processes. 

As deep learning has shown superior performance in image matching 
in the field of computer vision (Dusmanu et al., 2019), LBM has also 
been introduced into the remote sensing image registration field (Ye 
et al., 2022). Ye et al. (2018) designed a novel method for multispectral 
image registration using the combination of middle- or high-level fea-
tures extracted by a convolutional neural network (CNN) and the SIFT 
descriptor, which can overcome the defect of the original SIFT and 
improve the performance of registration. Wang et al. (2018b) con-
structed an end-to-end deep learning architecture that directly learns the 
mapping function between the sensed and reference image patch-pairs 
and their corresponding matching labels, where a transfer learning 
based on self-learning was used to accelerate the training process. Ma 
et al. (2019) introduced a coarse-to-fine registration method based on 
CNN and local features, where the CNN features were first detected by 
using VGG-16 to achieve deep pyramid feature representation. Subse-
quently, the feature matching and transformation estimation were 
further refined by combining the deep CNN features and handcrafted 
local features. Similarly, Zhang et al. (2019) evaluated the similarity 
score related to the learned common features extracted by their designed 
Siamese fully convolutional network (SFcNet), in this way, outlier can 
be removed and successful registration of a variety of multimodal im-
ages can be realized. Hughes et al. (2020) proposed a three-step 
matching framework consisting of a goodness network, multi-scale 
matching network, and outlier reduction network to realize the fully 
automated and multi-scale SAR and optical image registration. Zhou 
et al. (2021) first adopted a shallow pseudo-Siamese network with a 
small number of model parameters to produce the multiscale convolu-
tional gradient features (MCGFs), then the refined MCGF was used for 
improving the matching capacity of SAR and optical images. Cui et al. 
(2021) employed an attention mechanism and the spatial pyramid 
aggregated pooling to construct a novel network, namely MAP-Net with 
robustness to NRD and geometric distortions, which makes the designed 
key features containing the high-level semantic information, and this is 
beneficial to register multimodal images. 

Although current LBMs have achieved remarkable progress, their 
disadvantages are also quite significant. The main drawback is that LBM 
usually requires a large amount of training and labeled data, which will 
greatly affect the practical application of image registration. Due to the 
hyperparameters of training a deep network is generally far more than a 
human-defined feature extractor, the training efficiency is greatly 
related to the basic configuration of computer infrastructure. LBM’s 
superiority only is brought into play in multimodal image registration 

based on high-performance computer infrastructures, which is another 
disadvantage to limit its widespread use. 

Moreover, lots of mainstream commercial software (e.g., ENVI, 
ERDAS, and PCI) have basic registration function modules in which the 
traditional registration measures (e.g., NCC and MI) are still adopted for 
automatic multimodal image registration. As mentioned above, these 
traditional measures are difficult to achieve high precision registration 
of multimodal images that exist significant NRD and geometric distor-
tions. Therefore, there is a great demand for developing a robust and 
automatic registration system of multimodal images in engineering 
practice. 

In order to meet these above registration requirements, this paper 
first proposes a fast and robust matching method that is composed 
mainly of two essential components, then further designs an efficient 
registration system that involves a coarse-to-fine process to cope with 
various multimodal remote sensing images. During the matching stage, 
we first construct a novel and discriminative descriptor, called the 
Steerable Filters of first- and second-Order Channels (SFOC), through 
combining the first-order gradients with the second-order gradients by 
using the steerable filters, which is utilized to address significant NRD 
between multimodal images. Then, we establish a fast similarity mea-
sure, namely Fast Normalized Cross-Correlation (Fast-NCCSFOC), by 
improving the traditional NCC using the Fast Fourier Transform (FFT) 
technique and integral images, which is employed to accelerate the 
matching process. During the implementation of the registration system, 
a local coarse registration is performed by carrying out a Features from 
Accelerated Segment Test (FAST) operator (Rosten and Drummond, 
2006) with a partitioning strategy to detect uniformly distributed IPs, 
and whereafter designing a local geometric correction based on the 
Rational Function Model (RFM) to eliminate global geometric distor-
tions. In the subsequent fine registration stage, the designed system 
detects control points (CPs) by employing the proposed matching 
method and removing larger outliers by the RANSAC approach. 

In general, the main contributions of this paper are listed as follows: 
(1) a robust matching method consisting of two main components, a 
novel structure descriptor (SFOC) that combines the first-order gradients 
and second-order gradients by using the steerable filters with a multi- 
scale strategy to depict multidirectional and multiscale structure char-
acteristics, and a fast similarity measure (Fast-NCCSFOC) using the FFT 
technique and integral images to improve the matching efficiency. (2) 
an efficient registration system involving local coarse registration and 
fine registration. The local coarse registration makes full use of the prior 
georeferencing information of remote sensing images based on the RFM 
model to provide reliable spatial geometry constraints, which facilitates 
the subsequent fine registration. 

This paper is a further extension of our previous work (Ye et al., 
2021a), specifically as follows: (1) a novel descriptor named SFOC that is 
presented to depict more discriminative structure features by using the 
steerable filters with first- and second-order gradients. (2) a fast simi-
larity measure called Fast-NCCSFOC that is proposed to detect CPs by 
utilizing the FFT technique and integral images. (3) a more thorough 
evaluation of both the proposed matching method and the designed 
system using more multimodal RS images. 

The rest of this paper is organized as follows. Section 2 elaborates the 
pivotal components of the proposed matching method, including a 
discriminative descriptor and a fast similarity measure. In Section 3, the 
designed coarse-to-fine registration system is then introduced in detail. 
Subsequently, Section 4 evaluates the performance of the proposed 
matching method by using diverse multimodal datasets. In Section 5, the 
registration results of the designed system are discussed and analyzed. 
Finally, the conclusions are presented in Section 6. 

2. Proposed matching method 

In this section, a robust and fast matching method is proposed that 
consists of two key components. The two components are a novel 
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structural feature descriptor and a fast similarity measure, respectively. 
The detailed instruction will be provided in the following sections. 

2.1. Construction of structural feature descriptor 

As mentioned above, the structural features exhibit excellent per-
formance in multimodal image registration, and the phase-congruency- 
based methods have high time complexity despite their robustness to 
NRD (Xiang et al., 2020b; Wang et al., 2020; Li et al., 2019; Ye et al., 
2017). Recently, a number of descriptors based on multi-orientated 
gradient information to depict structural features have also proved to 
be robust to NRD, among which the channel features of orientated 
gradients (CFOG) (Ye et al., 2019), the angle-weighted oriented gradient 
(AWOG) (Fan et al., 2021), and the multi-Scale and multi-Directional 
Features of odd Gabor (SDFG) (Zhu et al., 2021) are the most repre-
sentative ones. Specifically, CFOG first explored the pixel-wise feature 
representation based on the dense orientated gradient features to effi-
ciently capture structure features of images and achieve fast and robust 
matching for multimodal images. However, CFOG generated multi- 
direction gradient features by the interpolation of the horizontal and 
vertical gradients, which results in reducing the distinguishability of the 
features. AWOG proposed an angle-weighted strategy to allocate the 
gradient values into the two most related orientations rather than 
interpolating to arbitrary direction as in the case of CFOG, and in this 
way, the distinctiveness of its feature vectors can be enhanced. The 
SDFG descriptor further increased a multi-scale strategy with multi- 
direction description using odd Gabor functions to extract the multi-
scale and multi-directional structural features, which can also further 
improve the discrimination of features. 

Although the CFOG, AWOG, and SDFG descriptors have been suc-
cessfully used for multimodal image matching, the construction of 
gradient channels for CFOG is calculated by simple pixel differences, 
which are very sensitive to noises. While the horizontal and vertical 
gradients of AWOG are calculated by the Sobel operator that simply 
comprises the first-order x-derivative and y-derivative operators. 
Meanwhile, the multi-scale information is deficient due to both the 
CFOG and AWOG neglecting the local inter-pixel relationships of im-
ages. Despite SDFG integrating the multi-scale information for feature 
description, it is similar to CFOG and AWOG that only make use of the 
first-order gradients, which results in a lack of local shape attributes in 
terms of curvature that exploited by the second-order gradients (Huang 
et al., 2014). 

Therefore, our work is strongly driven and inspired by the three 
similar structural feature descriptors (i.e., CFOG, AWOG, and SDFG) and 
to some extent also by the phase-congruency-based methods. The main 
purpose of the work in this paper is to construct a descriptor that cap-
tures distinctive structural features of images from different modalities 
as robust as possible. In this subsection, a novel structural descriptor is 
specifically proposed, named the Steerable Filters of first- and second- 
Order Channels (SFOC), for depicting multi-directional and multi-scale 
structural characteristics of multimodal images. Unlike the phase- 
congruency-based methods and the SDFG descriptor, the SFOC ex-
tracts multidirectional and multiscale structure characteristics by taking 
advantage of the steerable filters with a multi-scale strategy and the 
dilated Gaussian convolution with different dilated rates. In such a way, 
the loss of local spatial information caused by the gradient difference of 
CFOG and the Sobel operator of AWOG can be avoided, and the anti- 
interference for noise can be improved. 

If a function can be represented as a linear combination of rotated 
versions of itself, it is considered “steerable”. The steerable filters refer 
to a class of arbitrary orientation filters that can be synthesized into a 
linear combination of base filters (Freeman and Adelson, 1991). 
Therefore, the steerable filters can adjust different angles to realize the 

adaptive control of the filters, with linear, multi-direction, and multi- 
scale characteristics, so as to provide more details in the image infor-
mation of direction and edges, and have a wide range of applications in 
the field of contour extraction (Kochner et al., 1998), feature detection 
(Jacob and Unser, 2004), image denoising (Rabbani, 2009) and image 
enhancement (Zheng et al., 2019). More details regarding the steerable 
filters that are exploited for constructing the proposed descriptor are 
provided below. 

The higher-order directional derivatives of the Gaussian function 
have been proved to be steerable, among which the simplest steerable 
filter is the first-order Gaussian derivative. The Gaussian function G(x) in 
two-dimensional space is shown in the following equation: 

G(x) =
1

2πσ2e
− (x2+y2 )

2σ2 (1)  

where (x, y) are Cartesian coordinates, σ represents the variance of 
Gaussian function. Let Gn be the nth derivative of the G(x) in the x-di-
rection, and θ represents the rotation of any function concerning the 
origin. The first-order × Gaussian derivative is expressed as follows: 

G0◦

1,σ =
∂G
∂x

=

(

−
1

2πσ4

)

xe
− (x2+y2 )

2σ2 (2) 

If the same function G(x) is rotated 90◦, the following equation can 
be obtained: 

G90◦

1,σ =
∂G
∂y

=

(

−
1

2πσ4

)

ye
− (x2+y2 )

2σ2 (3) 

The first-order steerable G1 filter at arbitrary orientation θ can be 
synthetized by making use of a linear combination of G0◦

1,σ andG90◦
1,σ : 

Gθ
1,σ = cos(θ)G0◦

1,σ + sin(θ)G90◦

1,σ (4)  

where G0◦

1,σ and G90◦

1,σ are regarded as the basis filters of Gθ
1,σ filter because 

all the sets of Gθ
1,σ can be combined by them. 

Moreover, recent studies (Morgan, 2011; Wallis and Georgeson, 
2012) have shown that many local feature descriptors based on the first- 
order gradient information, such as SIFT, Histogram of Oriented 
Gradient (HOG) (Dalal and Triggs, 2005), DAISY (Tola et al., 2009), are 
far from accurate in capturing visual features of human perception. 
Since the first- and second-order gradients are related to different geo-
metric and structural features of images, the second-order gradient has 
better performance in describing detailed information than the first- 
order gradient. Hence, a more discriminative structure feature of the 
image can be depicted and reinforced when they are used in combina-
tion (Huang et al., 2014). In addition to the first-order steerable G1 filter, 
therefore, the second-order steerable G2 filter is also used in subsequent 
descriptor construction. Similar to the steerable G1 filter, the second- 
order Gaussian steerable filter G2 (Freeman and Adelson, 1991; Liu 
et al., 2002) is defined as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gθ
2,σ = k1(θ)G0◦

2,σ + k2(θ)G60◦

2,σ + k3(θ)G120◦

2,σ

G0◦

2,σ = Gxx =

(

−
1

2πσ4

)(

1 −
x2

σ2

)

e
− (x2+y2 )

2σ2

G90◦

2,σ = Gyy = (−
1

2πσ4)(1 −
y2

σ2)e
− (x2+y2 )

2σ2

Gxy = (
xy

2πσ6)e
− (x2+y2 )

2σ2 ,G60◦

2 = Gyy − Gxy,G120◦

2 = Gyy + Gxy

kj(θ) =
1
3
[1 + 2cos(2(θ − θj))], θ1 = 0◦

, θ2 = 60◦

, θ3 = 120◦

(5)  

whereG0
2,σ,G60

2,σ , and G120
2,σ are regarded as the basis filters of Gθ

2,σ filter 
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because all the sets of Gθ
2,σ can be combined by them, kj(θ) represents the 

corresponding interpolation functions. 
Formally, the construction of the proposed SFOC descriptor mainly 

consists of three key components: (1) the construction of the first-order 
steerable channels with multi-scale strategy, (2) the construction of the 
second-order steerable channels, and (3) dilated Gaussian convolution 
and normalization. Fig. 2 demonstrates the construction flowchart of the 
proposed SFOC descriptor and more details of which are specified as 
follows. 

The construction of SFOC is divided into two critical channels: the 
first-order steerable channels and the second-order steerable channels. 
Since the convolution operation is a linear operator, thus the first-order 
steerable channels of an image I (x, y) at an arbitrary orientation θ can 
be computed by convoluting the image with G0◦

1,σ andG90◦

1,σ . In the pro-
posed descriptor, the establishment of first-order channels is composed 
of six directions:0,π

6,
2π
6 ,

3π
6 ,

4π
6 ,

5π
6 . Meanwhile, the multi-scale strategy with 

different Gaussian standard deviations (STD) is embedded to further 
reinforce the descriptive completeness of local structure features with 
the purpose of increasing the discrimination. The specific calculation 
process is as follows: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S0◦

1,σ = G0◦

1,σ*I(x, y)

S90◦

1,σ = G90◦

1,σ *I(x, y)

Sθ
1,σ = cos(θ)S0◦

1,σ + sin(θ)S90◦

1,σ

(6)  

where σ represents the Gaussian standard deviation, and * denotes 
convolution operation. 

Furthermore, in order to enhance the detailed information of images, 
thus the second-order gradients based on the three basic filters (i.e.,G0◦

2,σ , 

G60◦

2,σ and G120◦

2,σ ) are applied in the construction process of the second- 
order channels. Similarly, the second-order steerable channels of the 
image I (x, y) at an arbitrary orientation θ can be computed by convo-
luting the image withG0◦

2,σ , G60◦

2,σ andG120◦

2,σ , which is expressed as Eq. (7). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0◦

2,σ = G0◦

2,σ*I(x, y

S60◦

2,σ = G60◦

2,σ *I(x, y)

S120◦

2,σ = G120◦

2,σ *I(x, y)

Sθ
2,σ = cos2(θ)S0◦

2,σ + sin2(θ)S60◦

2,σ − 2sin(θ)cos(θ)S120◦

2,σ

(7) 

Once the synthetical first- and second-order steerable channels are 
constructed, the specified direction features at different scales are 
summed to obtain as much useful information as possible in each di-
rection. Subsequently, these synthetical steerable channels in specified 
directions are convoluted by three parallel Dilated (or Atrous) Gaussian 
kernels, then the three parallel convolutional results are combined 
through one summation operation, which is designed to integrate a 
wealth of local inter-pixel information of images. The dilated Gaussian 
convolution with different dilated rates by inserting “holes” in the 
convolution kernels to expand its receptive field, which is inspired by 
the recent deep convolutional neural networks (Chen et al., 2017a; Chen 
et al., 2017b). In addition, the dilation rates r are set to [1, 2, 3] for 
avoiding the inherent “gridding” problem that exists in the current 
dilated convolution framework (Wang et al., 2018a). By this means, the 
multiscale context structure features of the synthetical first- and second- 
order steerable channels can be further enhanced by utilizing dilated 
Gaussian weighting without increasing the computational complexity, 
and play a role in smoothing noise as well. 

Fig. 3 clearly illustrates the advantages of utilizing the dilated 
Gaussian convolution for the construction of the SFOC descriptor. Four 
different types of heatmaps concerning different features are acquired 
by performing template matching. It is obvious that the heatmap of the 
original image pairs is the messiest, and the heatmap of the SFOC fea-
tures without Gaussian convolution has several peaks but the peak is not 
distinct, because it’s greatly affected by significant noise. In contrast, 
Gaussian convolution can effectively resist the interference of noise and 
make the peak more discriminative (see Fig. 3 (e) and (f)). Furthermore, 
the dilated Gaussian convolution can not only smooth the noise, but also 
further enhance the multiscale context structure features by the dilated 

Fig. 2. Construction flowchart of the proposed SFOC descriptor.  
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Gaussian weighting. This is the reason why the heatmap of the SFOC 
features with parallel Dilated Gaussian convolution presents a smoother 
and more discriminative peak than the general Gaussian convolution, 
which indicates that the matching robustness of SFOC with parallel 
Dilated Gaussian convolution may be superior. 

In particular, for the synthetical second- order steerable channels, σ 
with a larger value than the synthetical first-order steerable channels is 
used for dilated Gaussian smoothing as the second-order gradient de-
scribes more image detail but is accompanied by an increase in noises. 
Subsequently, the first- and second-order steerable channels are 
normalized respectively, then the final feature representation of SFOC is 
obtained by stacking them. 

2.2. Establishment of fast similarity measure 

The traditional normalized cross-correlation (NCC) is widely applied 
to determine corresponding CPs between the given image pairs with 
overlapping regions by evaluating the intensity similarity. However, it is 
often used only for CP detection of single-modal images, and is often 
unable to keep the same performance for multimodal image matching. 
As mentioned above, the SFOC descriptor can capture the structural 
features of images, which effectively resists NRD between multimodal 
images. Accordingly, it makes sense to establish a novel similarity 
measure that combines NCC with the SFOC descriptor. 

SFOC is a 3D descriptor with a large amount of data, as well as the 
NCC also has the disadvantage of large calculation amount and high 
computational complexity. Hence, in order to maintain the matching 
accuracy and improve the computational efficiency, a fast-matching 
similarity measure is designed based on NCC and SFOC, it’s expressed 
as Fast-NCCSFOC. The proposed Fast-NCCSFOC can be reformulated with 
more detail as follows in this subsection. 

First of all, the SFOC descriptor is used to calculate the structural 
features in the template image and the search image, which are denoted 
by T and S, respectively. Their normalized correlation value NCCSFOC (S, 
T) represents the similarity of the template window T (i, j, z) and the 
search window S (x, y, z) at the location (x, y), which is defined as. 

NCCSFOC(S,T)=
∑z

h=1
∑m

i=1
∑n

j=1[S(x+ i,y+ j,z) − S][T(i, j,z) − T]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑z

h=1

∑m

i=1

∑n

j=1
[S(x+ i,y+ j,z) − S]2

∑z

h=1

∑m

i=1

∑n

j=1
[T(i, j,z) − T]2

√

(8)  

where z presents the dimension of the SFOC descriptor. S (i, j, z) and T (i, 
j, z) are the feature value of the search window and the template window 
at the position (i, j, z), respectively. The sizes of the template and search 
window are m × n × z pixels and M × N × z pixels, respectively. T 
represents the average feature value of the template image, and S rep-
resents the average feature value of the search image S under the current 
template image T. 

The reason for the high computational complexity of traditional 
correlation matching is that NCC is completely recalculated for any 
search position (x, y), while the internal relation of the NCC of adjacent 
search points is ignored. In order to reduce the computational 
complexity, an equivalent transformation is performed on Eq. (8), as 
follows: 

NCCSFOC(S,T)=
RST(x,y,z)− RS(x,y,z)RT(i,j,z)/mnz

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[RSS(x,y,z)− R2
S(x,y,z)/mnz]

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[RTT(i,j,z)− R2
T(i,j,z)/mnz]

√

(9) 

There are only three items related to (x, y, z) are included in the 
above formula, which is respectively denoted as: 

RST(x, y, z) =
∑z

h=1

∑m

i=1

∑n

j=1
S(x + i, y + j, z)T(i, j, z) (10)  

RS(x, y, z) =
∑z

h=1

∑m

i=1

∑n

j=1
S(x + i, y + j, z);RSS(x, y, z)

=
∑z

h=1

∑m

i=1

∑n

j=1
S2(x + i, y + j, z) (11)  

Fig. 3. Illustration of the constructed descriptor utilizing different Gaussian convolution strategies. (a) SAR image. (b) optical image. (c) Heatmap of the original 
image pairs. (d) Heatmap of the SFOC features without Gaussian convolution. (e) Heatmap of the SFOC features with the general Gaussian convolution. (f) Heatmap 
of the SFOC features with parallel Dilated Gaussian convolution. 
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RT(i, j, z) =
∑z

h=1

∑m

i=1

∑n

j=1
T(i, j, z);RTT (i, j, z) =

∑z

h=1

∑m

i=1

∑n

j=1
T2(i, j, z) (12) 

It should be noticed that the first term RST(x, y, z) in the numerator is 
convolution operation, and the convolution in the spatial domain is 
equivalent to the dot production operation in the frequency domain. 
Therefore, it can be converted to the frequency domain, and the FFT 
technique is used to improve computational efficiency. Accordingly, the 
new expression of the term is equivalent to the following form: 

RST (x, y, z) =
∫ − 1

[

∫

(S)
∫ *

(T)] (13)  

where 
∫

is the signal of the Fourier transform, 
∫ * represents the conju-

gate complex operation of the transformed result, and 
∫ − 1 denotes the 

inverse FFT (i.e., IFFT). 
Additionally, the terms in the denominator and the other terms in the 

numerator of Eq. (9) require a lot of multiplications and additions. When 
the template is sliding, the sum of the squares and correlation values are 
recalculated, which results in computation time increased enormously. 
It can be seen that these terms, RS and RSS, fit the definition of the in-
tegral image (Viola and Jones, 2001). While the other two terms, RT and 
RTT, are only related to the template image, which results in their values 
being fixed. Therefore, the integral image is used to replace the original 
summation process with three simple addition and subtraction opera-
tions, which can effectively reduce the computational complexity of the 
original algorithm to calculate NCC, and improve the running time. 

The integral image G (x, y, z) is an intermediate image representation 
whose feature values at the position (x, y) is equal to the sum of the pixel 
values above and to the left of (x, y), including the values at positions ×, 
y, which can be represented as follows: 

G(x, y, z) =
∑z

h=1

∑x

i=1

∑y

j=1
g(i, j, z) (14)  

where z presents the dimension of the SFOC descriptor, g(i, j, z) is the 
SFOC feature, and G(x, y, z) represents the corresponding integral image. 

The integral feature map can be obtained in a single pass over the 
original feature by taking advantage of the following equations that are 
a pair of recursive formulas: 
{

s(x, y, z) = s(x, y − 1, z) + g(x, y, z)
G(x, y, z) = G(x − 1, y, z) + s(x, y, z) (15)  

where s(x, y, z) represents the cumulative column sum. A visualization of 
an integral image is shown in Fig. 4. Once the integral image is calcu-
lated, the integral of the feature values of the rectangular region with (x, 
y) as the upper left vertex is: 

∑z

h=1

∑m

i=x

∑n

j=y
G(x, y, z) = G(x + m, y + n, z) − G(x, y + n, z) − G(x + m, y, z)

+ G(x, y, z)
(16) 

As a result, these terms, RS and RSS, can be efficiently calculated 
utilizing the integral image by Eq. (16). Since the integral process only 
involves a limited number of additional operations, the complexity of 
the algorithm is mainly determined by FFT and IFFT in Eq.(13). Typical 
FFT and IFFT require about 2MNzlog2(MN) times of multiplication, and 
the Eq. (13) requires to calculate FFT and IFFT once in total. Accord-
ingly, the total number of multiplications required by the proposed Fast- 
NCCSFOC is as follows. 

T1 ≈ 4MNzlog2(MN) (17) 

With regard to the template matching strategy, the Eq. (8) is directly 
used to calculate NCC at each sliding position, and the calculation 
amount mainly depends on the dominant times of multiplication 

operation. For any search position, the Eq. (8) is used to calculate NCC 
for about 3 × m × n × z times of multiplication, and a total of (M-m +
1)×(N-n + 1) slidable positions need to be calculated for traversal search 
in the search window space. Thus, the number of multiplication oper-
ations required for NCC matching is: 

T2 = 3mnz(M − m + 1)(N − n + 1) (18) 

From the Eqs. (17) and (18), we can see that the computational 
complexity of the proposed Fast-NCCSFOC is independent of the template 
size, whereas the computational complexity of NCC is approximately 
proportional to the product of the template size and the search size, 
especially when m and n are small relative to M and N. The ratio of the 
computational complexity of the two similarity measures is: 

T =
T1

T2
≈

4MNzlog2(MN)

3mnz(M − m + 1)(N − n + 1)
(19) 

To facilitate the illustration of the computational advantage of Fast- 
NCCSFOC, we assume that z = 9, M = N, m = n, and M = 2 m. The curve of 
T changing with m is shown in Fig. 5. As the template and search sizes 
increase, the ratio of the computational complexity between Fast- 
NCCSFOC and NCC decreases rapidly, that is, the larger the template and 
search sizes are, the greater the computational advantage of Fast- 

Fig. 4. Illustration of integral images. The black box represents the search 
window and the red box represents the template window. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 5. Graph of the variation of T with m.  
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NCCSFOC is. Taking a template window m = 100 as an example accom-
panied by a search window M = 200, Fast-NCCSFOC takes about 0.799% 
of the time required by NCC, which greatly improves the computational 
efficiency. 

3. Registration system based on the proposed matching method 

In the previous section, SFOC is constructed to resist significant NRD 
between multimodal images, and Fast-NCCSFOC is designed for fast 
matching using FFT and integral images. These key steps are integrated 
into our multimodal image registration system. In addition to that, the 
registration system should further meet the following basic re-
quirements: (1) A sufficient number of CPs need to be uniformly 
distributed because the number and distribution of CPs greatly directly 
affect the accuracy and quality of subsequent image registration. (2) An 
outlier rejection process is used to remove the mismatches caused by 
some occlusions (i.e., clouds and shadow). 

The proposed registration system primarily carried out the following 
process to meet these requirements mentioned above: (1) local coarse 
registration, and (2) fine registration. Specifically, the local coarse 

registration consists of two steps: detection of interest points and local 
geometric correction. The fine registration involves three steps: (1) 
features extraction using SFOC, (2) CP detection using Fast-NCCSFOC, 
and (3) outlier detection and image rectification. The workflow of the 
designed registration system is shown in Fig. 6, which is then described 
in detail. 

3.1. Local coarse registration 

Most RS images, such as current state-of-the-art Earth observation 
data (e.g, TerraSAR, Sentinel, a series of the ZiYuan and GaoFen satel-
lites, etc), usually have associated geo-referencing information, which 
can be applied to limit the search region to a smaller area for guiding the 
matching process. Accordingly, for different types of georeferencing 
images (i.e., L1 and L2 data), we designed two different strategies of 
coarse registration in the proposed system. One is the reference image 
has been geometrically corrected, while the sensed image comes with a 
file that includes the RPCs, where RFM is first employed to perform a 
local coarse correction to eliminate scale and rotation differences be-
tween the reference and sense images. The other is that both the 

Fig. 6. The workflow of the proposed system.  
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reference and sensed images have been geometrically corrected, and the 
search area of image matching can be roughly predicted through 
geographic coordinates. In addition, if the resolution of the images is 
different, the higher resolution image should be uniformly sampled to 
the lower resolution image. The purpose of the coarse registration is to 
provide reliable spatial geometry constraints for the subsequent fine 
registration. 

3.1.1. Detection of interest points (IPs) 
The FAST operator is employed to detect IPs in our system because of 

its high computational efficiency, especially towards large-size RS im-
ages. However, the uneven distribution of the extracted IPs is a universal 
phenomenon (see Fig. 7a) when the FAST operator is directly applied on 
the whole image. It is well known that the uneven distribution of IPs 
could influence the fitting effect of the geometric transformation model, 
resulting in the registration accuracy degraded. 

Accordingly, and given the importance of this issue, the designed 
system employs a partitioning strategy to extract the uniformly 
distributed interest points of the sensed image, which is named the 
block-based FAST operator (Ye et al., 2021b). As shown in Fig. 7b, 
compared with the original FAST operator (see Fig. 7a), the block-based 
FAST operator can detect a sufficient number of IPs with uniform 
distribution. 

3.1.2. Local geometric correction 
After extracting the uniformly distributed IPs in the sensed image, an 

image patch (i.e., a template region) centered on an IP is first selected. If 
the sensed image comes with a file consisting of RPCs (i.e., L1 data), 
RFM is used to make the local geometric correction of the image patch, 
so that there is only a translation relationship between the patches (see 
Fig. 8). 

The RFM model relates the normalized 3D ground coordinates 
(Latitude, Longitude, Height) to normalized 2D image pixel coordinates 
(line, sample) in the form of a ratio of cubic polynomials. In order to 
improve the stability of the polynomial equation coefficients, the 2D 
image coordinates and 3D ground coordinates are each offset and scaled 
to normalize within the range (–1.0, 1.0) (Wang et al., 2017). The 

general RFM model is defined as follows: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rn =
NumL(Xn, Yn, Zn)

DenL(Xn,Yn,Zn)

cn =
NumS(Xn,Yn,Zn)

DenS(Xn, Yn, Zn)

(20)  

where (rn, cn) are the normalized 2D image coordinates, and (Xn,Yn,Zn)

are the normalized 3D ground coordinates.NumL,DenL,NumS and DenS 
denotes the terms of third-order polynomials of(Xn,Yn,Zn). 

As shown in Fig. 8, the local geometric correction based on RFM can 
effectively eliminate obvious scale and rotation differences between the 
patches and reduce the matching area to a certain range. Moreover, the 
strategy of local coarse registration can effectively reduce the memory 
footprint of the designed system, as well as improve the matching effi-
ciency, compared to performing the coarse correction for the entire 
sensed image. 

In addition, if the sensed image has been geometrically corrected (i. 
e., L2 data), the corresponding matching range is directly predicted on 
the reference image based on the geographic coordinates, which is 
shown in Fig. 9. Furthermore, the higher resolution is resampled to-
wards the lower resolution image if the resolution of the two images is 
different. 

3.2. Fine registration 

By exploiting the geo-referenced information, it is reasonable to as-
sume that the sensed and reference image are offset by only a few dozen 
pixels. After that, CPs are detected using Fast-NCCSFOC by a template 
matching scheme. Subsequently, RANSAC is employed to remove the 
CPs with large errors. 

3.2.1. Features extraction using the SFOC descriptor 
Since significant rotation and scale differences between image 

patches have been eliminated after the local geomatic correction, then 
the greatest matching difficulties are from severe NRD. Given that 
structure features have been widely used in multimodal image 

Fig. 7. Comparison of IP detection using different strategies. (a) IP detection by the original FAST operator. (b) IP detection by the block-based FAST operator.  
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registration due to their robustness to NRD, our system employs the 
proposed SFOC descriptor for image matching. Fig. 10 visualizes the 
SFOC descriptors of a sensed image patch with the local geometric 

correction and its corresponding reference image patch. It can be clearly 
observed that the two SFOC descriptors look quite similar between the 
two multimodal image patches, which also intuitively illustrate that the 

Fig. 8. Schematic of local geomatic correction.  

Fig. 9. Schematic of the sensed and reference image with geographical coordinates.  
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subsequent steps are feasible to use Fast-NCCSFOC as the similarity 
measure. 

3.2.2. CP detection using Fast-NCCSFOC 
Given the similarity characteristics of the SFOC descriptors between 

multimodal images, the designed system uses Fast-NCCSFOC (see section 
2.3) as the similarity measure for fast CP detection. The specific steps are 
as follows. 

Firstly, a template window is selected around one IP from the sensed 
image, and the local geomatic correction is implemented for the tem-
plate patch. Then the corresponding search window is predicted in the 
reference image on the basis of the geo-referenced information. Subse-
quently, SFOC is used to extract the structural features both in the 
template and the search window, respectively. Finally, Fast-NCCSFOC is 

employed for template matching, the position with the most similar 
SFOC feature is regarded as the CP (see Fig. 11). 

3.2.3. Outlier detection and image rectification 
Considering that some uncertain factors such as noise interference, 

distortions, and partial occlusion (e.g., clouds and shadow), mismatches 
are inevitable in practice. Thus, once the matching process is complete, 
RANSAC is used to remove the mismatches to obtain reliable CPs. 

The advantages of RANSAC are its robust estimation of model pa-
rameters and its ability to estimate high-precision parameters from data 
sets containing a large number of mismatched CPs. In the designed 
system, when the sensed image comes with a file that includes RPCs, the 
image compensation scheme (Wang et al., 2017), combining the affine 
transformation and the RFM model defined by Eq. (18), is utilized to 
reject mismatches with an iterative strategy. For the other case, the 
estimation model is the projection transformation that is suitable for 
common geometric distortions with RS images. 
{

r + Δr = r + a0 + a1r + a2c = RFMr(XN ,YN ,ZN)

c + Δc = c + b0 + b1r + b2c = RFMc(XN , YN ,ZN)
(21)  

where (r, c) are the 2D image coordinates of CPs in the sensed 
image,(Δr,Δc) represents the compensation values of systematic errors, 
(a1, a2, a3) and (b1, b2, b3) are coefficients of the affine compensation 
model, (XN,YN,ZN) are the corresponding 3D ground coordinates of 
matched CPs in the reference image, and RFM denotes the RFM model 
[see Eq. (20)]. 

(a) Sensed image patch with the local geomatic correction and its SFOC feature representation.

(b) Reference image patch and its SFOC feature representation.

Fig. 10. Visualization of the SFOC descriptor.  

Fig. 11. Diagram of the template matching.  
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After eliminating the mismatched CPs, the sensed image is corrected 
into the specified coordinate system of the reference image for image 
alignment. Considering both the accuracy and efficiency, the bilinear 
interpolation method is employed to resample the sensed image in the 
designed system. 

4. Experimental evaluation: Performance of the proposed 
matching method 

In this section, the performance of the proposed SFOC was experi-
mentally evaluated with different types of multimodal RS datasets (e.g., 
optical, infrared, LiDAR, SAR, and rasterized maps). Firstly, the exper-
imental settings were presented, which include the detailed information 
of all the test datasets, the evaluation criteria, the implementation de-
tails, and the parameters predefined. Then, SFOC was compared with 
the five state-of-the-art similarity measures (including MI, matching by 
tone mapping (MTM) (Hel-Or et al., 2013), PCSD, CFOG, and SDFG) for 
verifying its effectiveness. Finally, we analysed the robustness of SFOC 
against Gaussian white noise and speckle noise. 

4.1. Experimental settings 

Ten cases of multimodal image pairs with significant NRD were 
employed to evaluate the performance of SFOC. These cases cover a 
variety of low (10 m), medium (2 m-3 m), and high (0.5–1.5 m) reso-
lutions, specifically consisting of two Optical-to-Infrared cases, three 
LiDAR-to-Optical cases, three Optical-to-SAR cases, and two Optical-to- 
Map cases. The detailed information of these cases is given in Table 1, 
and these image pairs of each case are displayed in Fig. 13. In addition, 
the two images of each case have been pre-registered with the same 
ground sample distance (GSD) to remove obvious rotation and scale 
differences. 

In the experiments, the block-based FAST operator was first 
employed to extract 200 uniformly distributed IPs from the reference 
image. Then, the CP detection was performed using different similarity 
measures with a template matching manner. Considering that the larger 
the template window was, the better the matching performance was (Ye 
et al., 2019; Liang et al., 2021), the template window with the size of 80 
× 80 pixels was used for all the similarity measures. Furthermore, four 
criteria were used to quantitatively evaluate the matching performance 
in terms of the number of correct match (NCM), the correct matching 
ratio (CMR), the root-mean-square errors (RMSE), and the matching 
time (MT). The correct match was determined by manually selecting 50 
evenly distributed CPs to estimate the projective model for the image 
pairs of each case. The projective model was used to calculate the 
location errors of the matches obtained by different similarity measures, 
and the match within positioning errors of 1.5 pixels was defined as the 
correct CP. CMR was defined as CMR = NCM / total matches, where 
total matches refer to all matched CPs, including the outliers with large 
errors. The RMSE is expressed as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(xr

i - P(xs
i , ys

i ))
2
+ (yr

i - P(xs
i , ys

i ))
2

N

√
√
√
√
√

(22)  

where xr
i ,yr

i andxs
i ,ys

i are the pixel coordinates of the correct CP i between 
the reference and sensed image, P represents the projective model and N 
is the number of CPs. 

To make a fair comparison, MI was calculated using a histogram with 
32 bins, as this is usually accompanied by an optimal matching perfor-
mance (Ye et al., 2019). And the parameters of the other comparative 
similarity measures (i.e., MTM, PCSD, CFOG, and SDFG) used the best 
parameters recommended in their related papers, which are given in 
Table 2. As aforementioned in Section 2.2, the performance of SFOC was 
related to two key parameters, i.e., the Gaussian STD (σ1,σ2, and σ3) of 
first-order steerable channels, and the Gaussian STD (σ4) of second- 

order steerable channels. Their influences had been tested by the 
multimodal image cases described in Table 1, which manifests SFOC 
with the parameters (σ1 = 0.6,σ2 = 0.8, σ3 = 1 and σ4 = 1.5) achieved 
the optimal matching capacity. All experiments were performed using a 
personal computer (PC) with the configuration of Inter (R) Core (TM) 
CPU i7-10750H 2.6 GHz and 16 GB RAM. 

4.2. Comparison and analysis of matching performance 

In this section, the performance of the proposed method was quan-
titatively and qualitatively evaluated. With the same IPs extracted by the 
block-based FAST detector, the quantitative evaluation was first per-
formed by comparing SFOC with five state-of-the-art descriptors: MI, 

Table 1 
Detailed information of all test cases.  

Category Case Image source GSD Data Size Location 

Optical-to- 
Infrared 

1 Daedalus 
optical 
Daedalus 
infrared 

0.5 
m 
0.5 
m 

04/ 
2000 
04/ 
2000 

512 ×
512 
512 ×
512 

Urban 

2 QuickBird 
visible 
QuickBird 
infrared 

2.4 
m 
2.4 
m 

05/ 
2006 
05/ 
2006 

1028 
×

1137 
1028 
×

1137 

Suburban 

LiDAR-to- 
Optical 

3 LiDAR 
intensity 
WorldView-2 
optical 

2 m 
2 m 

10/ 
2010 
10/ 
2011 

600 ×
600 
600 ×
600 

Urban 

4 LiDAR 
intensity 
WorldView-2 
optical 

2 m 
2 m 

10/ 
2010 
10/ 
2011 

621 ×
617 
621 ×
621 

Urban 

5 LiDAR depth 
WorldView 2 
optical 

2.5 
m 
2.5 
m 

10/ 
2010 
10/ 
2011 

524 ×
524 
524 ×
524 

Urban 

Optical-to- 
SAR 

6 Sentinel-2 
optical 
Sentinel-1 
SAR 

10 
m 
10 
m 

09/ 
2018 
10/ 
2018 

1501 
×

1501 
1501 
×

1501 

Suburban 

7 Google Earth 
TerraSAR-X 

3 m 
3 m 

11/ 
2007 
12/ 
2007 

528 ×
524 
534 ×
524 

Urban 

8 Google Earth 
TerraSAR-X 

3 m 
3 m 

03/ 
2009 
01/ 
2008 

628 ×
618 
628 ×
618 

Suburban 

Optical-to- 
Map 

9 Image from 
Google Maps 
Map from 
Google Maps 

0.5 
m 
0.5 
m 

unknow 
unknow 

700 ×
700 
700 ×
700 

Urban 

10 Image from 
Google Maps 
Map from 
Google Maps 

1.5 
m 
1.5 
m 

unknow 
unknow 

621 ×
614 
621 ×
614 

Urban  

Table 2 
Parameters setting of all similarity measures.  

Method Parameters setting 

MI 32 histogram bins 
MTM Default settings 
PCSD Order partitions number: 3, angle interval number: 9, radius interval 

number: 4 
CFOG Gaussian STD: 0.8, orientated gradient channel number: 9 
SDFG Default settings 
SFOC the Gaussian STD:σ1 = 0.6,σ2 = 0.8, σ3 = 1 and σ4 = 1.5  
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MTM, PCSD, CFOG, and SDFG. Moreover, in order to evaluate the 
effectiveness of the second-order gradient in the generation process of 
SFOC, the SFOC descriptor was degraded by only using the first-order 
steerable channels without the second-order steerable channels. The 
degraded SFOC descriptor was represented by F-SFOC, and it was also 
used for matching performance comparison with other similarity 
measures. 

The seven different similarity measures, i.e., MI, MTM, PCSD, CFOG, 
SDFG, F-SFOC, and SFOC, were applied to ten multimodal image cases 
(Table 1) for the comparison of matching performance. Fig. 12 depicts 
the comparison results of all the evaluation criteria (i.e., NCM, CMR, 
RMSE, and MT) for the different methods on each multimodal image 
pair. It is obvious that SFOC outperformed the other methods for the 
above four criteria in all test cases, which effectively demonstrates the 
superiority and robustness of the proposed SFOC. 

Among the six similarity measures used for comparison, the worst 
matching performance was found in the MI and MTM. MI and MTM had 
comparable matching performance, but MTM performed slightly better 
than MI on two Optical-to-Infrared cases, while MI performed better 
than MTM on cases 3–8. This may be related to the fact that MTM only 
utilizes a piecewise linear function to fit the intensity changes widely 
existing in the multimodal images. However, the intensity relationship 
between optical and SAR (or LiDAR) images is too complex to be fitted 
by MTM, which results in its performance degradation. Although the 
performance of MI was slightly better than that of MTM, it was the most 
time-consuming among all the similarity measures because it requires 
calculating a large number of joint probability histograms. 

From the comparison results in Fig. 12, we can also observe that 
PCSD, CFOG, and SDFG performed significantly better than MI and 
MTM, while SDFG had slightly better performance compared with CFOG 

Fig. 12. Performance comparison of different methods on the ten multimodal image cases with the template size of 80 × 80 pixels. (a) NCM. (b) CMR. (c) RMSE. 
(d) MT. 
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and PCSD. The main reason is that PCSD is constructed by using the 
multiscale phase congruency structural features, and CFOG is built 
making use of the dense channel features of orientated gradients, which 
is more robust to NRD than MI and MTM. When comparing PSCD with 
CFOG, its performance was slightly worse than that of CFOG. The reason 
for that is the PCSD may lose some detailed structural information 
because it employed the strategy of the phase congruency order-based 
region division for descriptor construction, As for SDFG, since it 
further increasingly adopted the multi-scale strategy on the basis of 
multi-direction using odd Gabor functions, its matching performance 
was more robust than CFOG, but the matching process was more time- 
consuming. In addition, the construction of PCSD relies on multiscale 
phase congruency features, which results in it being time-consuming. 
Therefore, PCSD and MTM were the most time-consuming apart from 
MI in all the compared similarity measures. 

For our degraded descriptor (i.e., F-SFOC), its matching performance 
was comparable to SDFG, and it yielded better results than CFOG on the 
criterion of RMSE, especially in the LiDAR-to-Optical and Optical-to- 
SAR cases. This phenomenon illustrates that the first-order Gaussian 
steerable filters and the dilated Gaussian convolution are effective to 
construct the descriptor. While the matching performance of F-SFOC 
was obviously lower than SFOC, which verified the feasibility and 

effectiveness of adding the second-order gradient in the generation of 
SFOC. In this way, the robustness and discriminability of SFOC can be 
effectively increased. As far as the MT, F-SFOC was slightly faster than 
CFOG, because it only took advantage of the first-order steerable 
channels without the second-order steerable channels resulting in a 
smaller dimensionality of its features than that of CFOG. Whereas SFOC 
required slightly more time-consuming than CFOG and SDFG, this is 
related to the multi-scale strategy with different Gaussian STD and the 
dilated Gaussian convolution with different dilated rates were 
embedded in the generation process of SFOC. Hence, considering the 
improvement of the matching performance for SFOC, it is acceptable to 
sacrifice a little running time. 

Moreover, qualitative evaluation was performed by displaying the 
correct matched CPs for the visual inspection. As shown in Fig. 13, these 
CPs were established by SFOC on the image pairs of each case with a 
template size of 80 × 80 pixels. it is obvious that these obtained CPs on 
the image pairs of each case were evenly distributed, and the location 
accuracy of these CPs was relatively precise despite significant NRD and 
noise between these multimodal image pairs. 

Fig. 13. Matching results of all test cases by SFOC with the template size of 80 × 80 pixels. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6. (g) Case 
7. (h) Case 8. (i) Case 9. (j) Case 10. 
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4.3. Comparison and analysis of noise sensitivity 

In this section, the anti-noise performance of the above-mentioned 
similarity measures was evaluated and analyzed by adding different 
levels of Gaussian white noise and speckle noise to the images, respec-
tively. Because the NRD between multimodal images is difficult to be 
precisely fitted only by a simple mathematical model. Meanwhile, 
LiDAR and SAR images typically contain more noise than infrared im-
ages, which is not conducive to the assessment of noise sensitivity. 
Consequently, all the similarity measures were performed with the 
template size of 80 × 80 pixels for the selected four pairs of Optical-to- 
Infrared cases, and their average value of CMR was used for the subse-
quent analysis. Specifically, two types of series noisy images were 
generated by adding the different levels of Gaussian white noise with 
mean 0 and variance v in the range [0, 0.01] with an interval of 0.001, 
and the different levels of speckle-noise with variances v in the range [0, 
0.1] with an interval of 0.01, respectively. 

Fig. 14 presents the average CMRs of different similarity measures 
versus various noise consisting of Gaussian white noise and speckle 
noise. SFOC and its degraded version (i.e., F-SFOC) achieved superior 
capacities under increasing Gaussian and speckle noise, followed by 
SDFG and CFOG. It demonstrated that the generation of SFOC using the 
dilated Gaussian convolution with different dilated rates could be more 
effective for resisting noise than SDFG only utilizing the general 
Gaussian convolution, and the generation of SFOC and SDFG both using 
a series of filters was more useful in withstanding noise than CFOG only 
utilizing simple gradient computation with the pixel difference. While 
the orientation channels of CFOG were implemented by the Gaussian 
kernel, which is more effective to reduce the interference of noise than 
PCSD. In addition, the performance of MI was relatively stable under 
various noises, but its average CMR was still lower than SFOC, F-SFOC, 
and CFOG. And MTM also presented lower robustness to Gaussian and 
speckle noise compared with MI. 

The above results and coherence analysis demonstrate that SFOC has 
apparent effectiveness and advantages for resisting significant NRD and 
noise between multimodal images, as well as high computational effi-
ciency. The good adaptive performance was mainly due to the following 
reasons. On the one hand, it not only employed the first-order steerable 
filters with the multi-scale strategy to depict the multi-direction and 
multiscale structure features between multimodal images, but it also 
utilized the second-order steerable filters and three parallel dilated 
Gaussian kernels to emphasize more detailed structures, which further 
improves the discriminative and anti-noise capability of the proposed 

method. On the other hand, the improved Fast-NCCSFOC based on the 
FFT and integral image technique ensured its fast computational 
efficiency. 

5. Experimental evaluation: Performance of the designed 
registration system 

In this section, the registration performance of the designed system 
was analyzed both in qualitative and quantitative evaluation, compared 
with the three popular commercial software systems (i.e., ENVI 5.3, 
ERDAS 2015, and PCI Geomatic 2016) by testing the same multimodal 
images. In the designed system, the programming language was C++

and the interface was designed by Qt. For image reading and writing, the 
implementation of the open-source Geospatial Data Abstraction Library 
(GDAL) in C++was used. As is known to all, ENVI 5.3, ERDAS 2015, and 
PCI Geomatic2016 all have the automatic registration function modules, 
which have been widely used for remote sensing image registration. 
These function modules are called “Image Registration Workflow 
(ENVI)”, “AutoSync Workstation (ERDAS)”, and “OrthEngine-Automatic 
GCP Collection (PCI)”, respectively. All the experiments were performed 
on the personal computer (PC) with the same configuration as described 
in the previous section (i.e., CPU i7-10750H 2.6 GHz and 16 GB RAM). 

5.1. Description of experimental datasets 

Experiments were conducted by applying the above three systems 
and the designed system to various multimodal images acquired at 
different geographic districts and times. The selected experimental 
datasets intentionally exhibit large image sizes, severe geometric dis-
tortions, significant NRD, and large differences in acquisition date and 
spatial resolution, and they make sense to testify the universality and 
robustness of the designed system. 

Two different categories of testing datasets were used to evaluate our 
system. The first category is both the sensed and the reference images 
that had been geometrically corrected (i.e., L2 data), the second cate-
gory is the sensed image with RPCs (i.e., L1 data). The summary de-
scriptions of the experimental datasets are given in Table 3 and Fig. 15. 
Among them, test 1 and test 2 belong to the first category, and the 
second category consists of test 3 and test 4. 

5.2. Implementation details and evaluation criteria 

As far as we are aware, ENVI, ERDAS, and PCI all adopt the template 

Fig. 14. Average CMRs of different similarity measures versus various noise. (a) Average CMRs of different similarity measures versus various Gaussian white noise. 
(b) Average CMRs of different similarity measures versus various speckle noise. 
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matching scheme to detect CPs between the sensed and reference im-
ages, which is similar to our system. In general, the best fitting template 
(i.e., the location of the CP) is identified by the similarity measure in the 
matching. For the selection of similarity measures, different commercial 
software employs different similarity measures. ENVI provided NCC and 
MI to carry out image matching, which was redefined as “ENVINCC” and 
“ENVIMI” in the following sections, respectively. While PCI utilized NCC 
and Fast Fourier Transform Phase Matching (FFTP) to perform the 
matching process, which was referred to as “PCINCC” and “PCIFFTP” in 
subsequent sections, respectively. Whereas ERDAS achieved CPs by 
NCC, as well as employed pyramid-based matching techniques to 
improve the matching performance, which was indicated as 
“ERDASNCC”. 

Furthermore, in the template matching process, the larger the win-
dow is, the higher the matching performance is, but also more time- 
consuming. Accordingly, the matching parameter setting of the soft-
ware will affect the efficiency and precision of image matching. In order 
to make a fair comparison, the matching parameters of all the systems 
should be set the same as far as possible, and the image rectification was 
performed using the second-order polynomial model. Table 4 shows the 
common matching parameters between each system, these parameters 
were set to the same values in the comparison experiment. 

Whereafter, the experimental results were analyzed in terms of 
matching precision and computational efficiency. The matching preci-
sion was related to the NCM, CMR, and RMSE, and their definition was 
consistent with the previous section, which can be served as the evalu-
ation criterion of quantified registration accuracy. Meanwhile, the 
matching time (MT) of the matching process was recorded to evaluate 
the running efficiency of different systems. In addition, we also provided 
the visualization of the matching CP pairs of each case and the super-
position verification of the reference and sensed images, whereby the 
registration performance of the designed system can be verified intui-
tively and qualitatively. 

Table 3 
Summary descriptions of the test images.  

Category Test Case Reference Image Sensed Image Image Characteristic 

The First Category (L2 data) Test 
1 

Sensor: Google Earth, Optical 
Spatial resolution: 4.5 m 

Sensor: Sentinel-1, SAR 
Spatial resolution: 10 m 

The west of images is covered by mountains, while the  
east covers a suburban area with rivers and buildings. Moreover,  
the image resolution difference is about two times. Data: 8/2016 

Size: 26880 × 23552 
Data: 09/2018 
Size: 10980 × 10980 

Test 
2 

Sensor: Google Earth, Optical 
Spatial resolution: 2 m 

Sensor: GaoFen-3, SAR 
Spatial resolution: 1.5 m 

Images cover an urban area with high buildings  
and have local geometric distortions. Moreover,  
there is obvious noise on the SAR image. Data: 02/2018 

Size:22784 × 11688 
Data: 07/2018 
Size: 26442 × 21598 

The Second Category (L1 data) Test 
3 

Sensor: Google Earth, Optical 
Spatial resolution: 9 m 

Sensor: GaoFen-1, WFV 
Spatial resolution: 16 m 

Images cover buildings, rivers, mountains, and seas. Moreover,  
there is a temporal difference of about five years in the local  
region, and the resolution difference is about two times. Data: 01/2014 

Size: 26624 × 26368 
Data: 11/2019 
Size: 12000 × 13400 

Test 
4 

Sensor: Google Earth, Optical 
Spatial resolution: 1 m 

Sensor: GaoFen-3, SAR 
Spatial resolution: 3 m 

Images cover an undulating terrain with hills, rivers, and  
buildings. Moreover, there is obvious noise on the SAR image,  
and the resolution difference is about three times. Data: 04/2016 

Size: 37376 × 35584 
Data: 09/2020 
Size: 21852 × 21241  

Fig. 15. The experimental test image pairs. In each pair of columns, the top is the reference image and the bottom is the sensed image.  

Table 4 
Common matching parameters in all the systems.  

Parameter item Designed system ENVI ERDAS PCI 

Similarity measure Fast-NCCSFOC NCC 
MI 

NCC NCC 
FFTP 

Number of detected IPs 400 400 400 400 
Search window size 200 200 Default 300 
Template window size 100 100 Default Default  
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5.3. Comparison and analysis of registration performance 

Table 5 shows the quantitative comparison between the designed 
system and the other systems among the four criteria in terms of NCM, 
CMR, MT, and RMSE for the experimental image pairs of the first 
category. As far as the overall performance in Table 5 is concerned, the 
designed system achieved the best matching performance for all the 
image pairs of each case, which demonstrated the effectiveness of the 
designed system. Since diverse image pairs of each case had differences 
in geometric distortions, NRD, noise, and spatial resolution, each soft-
ware system presented the different matching results of different cases. 

The performance of the NCC-based (i.e., ENVINCC and PCINCC) sys-
tems was the worst, with no CPs detected by these systems. Since 
ERDASNCC employed the pyramid-based matching technique to enhance 
the robustness of matching, its overall performance was slightly better 
than ENVINCC and PCINCC. In addition, there were a few CPs identified by 
PCIFFTP only for test 1, but their accuracy was poor. To sum up, the 
designed system presented the smallest RMSE, the fastest MT (except 
PCIFFTP), the highest CMR, and the most NCM in all test cases, and the 
matching accuracy of ENVIMI was second best. The overall performance 
of ERDASNCC ranked third, PCIFFTP fourth, and NCC-based last. 

Table 6 shows the quantitative comparison between the designed 
system and other systems among the four criteria in terms of NCM, CMR, 
MT, and RMSE for the experimental image pairs of the second category. 
Since ERDAS does not have the automatic registration module for sat-
ellite images with RPCs, the “×” indicates that there was no registration 
function for such category in Table 6. The ENVI system only employed 
the NCC as a similarity measure to match CPs for the second type of 
images with RPCs, which was referred to as ENVINCC that was compared 
with our system and PCI. 

It was apparent from Table 6 that our system still achieved the best 
matching performance in the two tested cases of the second scheme. For 
test 3 where the matching performance of ENVINCC and PCINCC was still 
low, and the CMR was only 10.5% and 12.25%, respectively. And the 
matching performance of PCIFFTP is much better than PCINCC in test 3. 
Whereas the CMR of our system was as high as 84.75% and the accuracy 
was much higher than ENVINCC, PCINCC, and PCIFFTP. Moreover, 
ENVINCC, PCINCC, and PCIFFTP matching comprehensively failed for the 
Optical-to-SAR case of test 4, but the designed system still maintained a 
high CMR of 64.5%. These results quantitatively demonstrated that the 
local coarse-to-fine registration processes devised by our system were 
effective for matching multimodal images with RPCs. The local coarse 
registration with spatial geometric constraints using the RFM model can 
effectively eliminate the obvious geometric distortions between images. 
Moreover, the local geometric correction can avoid correcting the entire 
sensed image with RPCs that will yield an intermediate image file, as 
well as reduce the memory consumption of the system while ensuring 
the timeliness of our system. 

The above different registration performance of these systems can be 
attributed to the following reasons. Firstly, the NCC and phase correla-
tion methods were more sensitive to significant NRD between multi-
modal images. And MI had stronger NRD-suppressing abilities than the 
NCC and phase correlation methods, which ascribed its generation 
process using the entropy and joint entropy in information theory. 
Whereas, the designed system made use of SFOC to extract structural 
features, which enhanced the robustness of the designed system by 
depicting the multi-scale and multi-directional structural information. 
Meanwhile, the computational efficiency of the designed system was 
guaranteed by using Fast-NCCSFOC as the similarity measure. 

The registration results of our system were qualitatively evaluated by 
visual inspection. Specifically, Fig. 16 exhibits the detected CPs of all the 
test cases by the designed system. We can see that these detected CPs 
were uniformly distributed across each multimodal image pair because 
the block-based FAST operator was applied to detect IPs in our system. 
Moreover, their location precision was satisfactory in spite of large 
differences in geometric distortions, NRD, noises, and spatial resolution 
for each multimodal image pair. 

For the sake of checking the final alignment results, Fig. 17 presents 
the superposition registration results of the reference and sensed images 
registered by our system. And it was apparent that all sensed images had 
been aligned correctly. 

6. Conclusion 

This paper has presented a robust matching method for the regis-
tration of multimodal remote sensing images, involving both a novel 
SFOC descriptor and a fast similarity measure (i.e., Fast-NCCSFOC). SFOC 
is first proposed by making use of the first- and second-order Gaussian 
steerable filters, which aims to capture distinctive structural features for 
resisting significant NRD between multimodal images. Then Fast- 
NCCSFOC is established by combining NCC and SFOC, and it speeds up 
the image matching by using the FFT technique and integral images. 
Furthermore, an automatic registration system is developed based on 
the proposed matching method, which involves a local coarse registra-
tion and a fine registration. The local coarse registration is conducted 
using the block-based FAST operator and local geometric correction. 
Specifically, the block-based FAST operator is first employed to detect 
evenly distributed IPs, and local geometric correction is intended to 
eliminate the apparent geometric distortions by means of the RFM 
model. Next, the fine registration is employed by applying SFOG with a 
template matching manner. The experimental results on ten various 
multimodal images have demonstrated the robustness and effectiveness 
of SFOG. In contrast to other state-of-the-art similarity measures (i.e., 
the MI, MTM, PCSD, CFOG, SDFG), the proposed SFOC achieved the best 
matching performance both in the quantitative evaluation and qualita-
tive examination. In addition, the designed system was also quantifi-
cationally and qualitatively evaluated by testing four multimodal 
images with significant differences in geometric distortions, NRD, 

Table 5 
Quantitative comparison for matching results of the first category.  

Test 
Case 

System NCM CMR 
(%) 

MT 
（（sec.）） 

RMSE 
(pixel) 

Test 1 ENVINCC Failed Failed Failed Failed 
ENVIMI 30 7.50% 245.04 2.94 
ERDASNCC 25 5.25% 56.89 6.21 
PCINCC Failed Failed Failed Failed 
PCIFFTP 13 3.25% 12.61 9.63 
Designed 
System 

307 76.75% 23.45 1.21 

Test 2 ENVINCC Failed Failed Failed Failed 
ENVIMI 20 5.00% 435.29 3.53 
ERDASNCC 19 4.75% 53.32 6.76 
PCINCC Failed Failed Failed Failed 
PCIFFTP Failed Failed Failed Failed 
Designed 
System 

268 67.00% 27.81 1.86  

Table 6 
Quantitative comparison for matching results of the second category.  

Test 
Case 

System NCM CMR (%) MT 
(sec.) 

RMSE 
(pixel) 

Test 3 ENVINCC 42 10.50% 25.88 2.75 
ERDAS × × × ×

PCINCC 49 12.25% 12.78 2.85 
PCIFFTP 299 74.75% 17.62 1.25 
Designed 
System 

339 84.75% 23.46 0.87 

Test 4 ENVINCC Failed Failed Failed Failed 
ERDAS × × × ×

PCINCC Failed Failed Failed Failed 
PCIFFTP Failed Failed Failed Failed 
Designed 
System 

258 64.50% 23.06 1.69  
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noises, and spatial resolution. The results indicated our system out-
performs ENVI, ERDAS, and PCI in registration performance, which il-
lustrates it has the potential for engineering applications. 

Although SFOC presents robust performance for multimodal image 
matching, it is sensitive to global geometric distortions between images, 

that is, it cannot be adapted to multimodal image matching with large 
scale or rotation differences. The designed system depends on the prior 
geo-referenced information of RS image to eliminate obvious geometric 
distortions before the fine registration. Therefore, if the sensed image 
does not come up with the geo-referenced information or RPCs, our 

Fig. 16. Detected CPs by the designed system.  
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system will not be applicable. Future research aims to design an 
enhanced system that is adaptable to geometric distortions with the 
assistance of geo-reference information, and explore the similarity 
measure with scale and rotation invariance. 
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